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A characteristic-based semi-Lagrangian (CSL) method is developed for hyperbolic systems of
conservation laws. In the CSL method, the governing equations are first transformed into a system
of equations in characteristic form and then the Lagrangian form of the transformed equations is
solved along the characteristic directions. By definition of hyperbolicity, such a transformation
always exists. The CSL method is first illustrated by applying it to the one-dimensional (1-D)
shallow water equations to solve the Rossby geostrophic adjustment problem. The authors then
apply the CSL method to the 1-D fully-compressible, non-hydrostatic atmospheric equations to
solve the hydrostatic adjustment problem. Transient solutions for both the linear and nonlinear
problems are obtained and analyzed. It is shown that the CSL method produces more accurate
solutions than the conventional semi-implicit semi-Lagrangian (SISL) method. It is also shown that
the open boundary conditions can be easily implemented using the CSL method, which provides
another advantage of the CSL method for regional atmospheric modeling. The extension to multi-
dimensional hyperbolic systems is discussed and a simple demonstration is presented. The present
study indicates that, although the SISL method is commonly used in the atmospheric models,
the CSL method is potentially a better choice for fully-compressible, non-hydrostatic atmospheric
modeling.

Key words: characteristic-based semi-Lagrangian method; hyperbolic systems; non-hydrostatic
modeling; open boundary condition.

1 INTRODUCTION

A non-hydrostatic, fully-compressible atmospheric model is essentially hyperbolic in
time. The eigenvalues are all real and wave motions are the main features of the system
(Hirsch, 1988). For hyperbolic-dominant partial differential equations (PDEs), a characteristic-
based semi-Lagrangian (CSL) method can be used. In the CSL method, the governing
equations are first transformed into a system of equations in characteristic form and then
one solves the Lagrangian form of the transformed equations along the characteristics. By
definition, this transformation can always be done for a hyperbolic system. This method
has its origin in the method of characteristics (MOC) in gas dynamics or free surface waves
in hydraulic engineering. This is our first attempt to develop a semi-Lagrangian method
based on the characteristic decomposition for non-hydrostatic atmospheric modeling.
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The semi-Lagrangian method is widely used in meteorological modeling. However, in
the conventional semi-Lagrangian method, only the prime characteristic directions, i.e., the
directions associated with the local wind, are considered (Staniforth and Cote, 1991, p.2213).
The CSL method is different from the conventional semi-implicit, semi-Lagrangian (SISL)
method. In the SISL method, the acoustic mode is treated using an implicit scheme, while
the Lagrangian method is used for other wave components where only wind is used for
advection. In the CSL method, the PDEs are first transformed to their characteristic form.
The transformed equations are solved using the Lagrangian method similar to that used in
the SISL method, except that the characteristic velocities are used for advection.

The Rossby geostrophic adjustment and hydrostatic adjustment processes are two funda-
mental processes in the atmosphere. The fast-moving gravity waves and acoustic waves play
an essential role in the two adjustment processes. A non-hydrostatic, fully-compressible at-
mospheric model permits both these types of waves and the associated adjustment processes.
Therefore, numerical methods applied to this kind of model should treat these fast-moving
gravity waves and acoustic waves accurately in order to accurately simulate the adjustment
processes and related phenomena. The present study indicates that the CSL method can be
such a method. Furthermore, the CSL method is also found well suited for the implemen-
tation of open boundary conditions.

The purposes of this paper are: (a) to develop the CSL method for hyperbolic systems
of conservation laws and illustrate it in the 1-D systems; (b) to compare the CSL method
with the conventional SISL method in solving the hydrostatic adjustment problem; and
(c) to illustrate the implementation of the open boundary condition problem with the CSL
method. The extension to the multi-dimensional problems is also discussed.

In the next section, the CSL method is illustrated in the 1-D shallow water systems to
solve the Rossby adjustment problem. Section 3 applies the CSL method to the 1-D non-
hydrostatic atmospheric model to solve the hydrostatic adjustment problem. Comparisons
of the CSL method with the conventional SISL method are given in Section 4, followed by
a discussion on open boundary conditions. Section 6 discusses the extension to the multi-
dimensional hyperbolic systems. Summary and conclusions are given in Section 7. The
details of the SISL method are given in the Appendix.

2 THE CSL METHOD FOR THE 1-D SHALLOW WATER MODEL

We first illustrate the CSL method by applying it to the 1-D shallow water equations to
solve the Rossby adjustment problem. The 1-D inviscid, nonlinear shallow water equations
can be written in the form:

∂V

∂t
+ A

∂V

∂x
= Q, (2.1)

where

V =




u
v
h


 , A =




u 0 g
0 u 0
h 0 u


 , Q =




+fv
−fu

0


 .

The notation is standard: u and v are velocities in the x and y directions, h is the depth
of fluid, g is the acceleration due to gravity, and f is the Coriolis parameter. In the CSL
method, Eq. (2.1) is first transformed into the characteristic form through a diagonalization
procedure in the following way:
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1) Solve the eigenvalue equation

|λI −A| = 0 (2.2)

to get three real eigenvalues:

λ1 = u, λ2 = u + c, λ3 = u− c, (2.3)

where c =
√

gh. These eigenvalues are also called the characteristic velocities (Kulikovskii
et al., 2001, p.3);

2) Compose the diagonalization matrix L−1 by the left eigenvectors, and the matrix L
by the right eigenvectors in the column:

L−1 =




0 1 0
1 0 +

c

h
1 0 − c

h


 , L =




0
1
2

1
2

1 0 0

0
h

2c
− h

2c


 ; (2.4)

3) Define the characteristic variables δW as:

δW = L−1δV =




δv

δu +
c

h
δh

δu− c

h
δh


 ; (2.5)

4) The characteristic form equations become:

∂W

∂t
+ L−1AL

∂W

∂x
= L−1Q, (2.6)

or

∂W

∂t
+




u 0 0
0 u + c 0
0 0 u− c


 ∂W

∂x
= F, (2.7)

where forcing terms F are given by

F = L−1Q =




F1

F2

F3


 =



−fu
+fv
+fv


 .

We write Eq. (2.7) in the Lagrangian form as follows:

D1v

Dt
= F1, (2.8)

D2u

Dt
+

c

h

D2h

Dt
= F2, (2.9)

D3u

Dt
− c

h

D3h

Dt
= F3, (2.10)

where
D1

Dt
=

∂

∂t
+ u

∂

∂x
,

D2

Dt
=

∂

∂t
+ (u + c)

∂

∂x
,

D3

Dt
=

∂

∂t
+ (u− c)

∂

∂x
.
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Equations (2.8)–(2.10) are then solved along the three characteristics, respectively:

C0 : dx/dt = u, C+ : dx/dt = u + c, C− : dx/dt = u− c.

Because the Lagrangian trajectories are calculated along the three characteristics using their
respective characteristic wave velocities, we will call this procedure as the characteristic wave
tracking.

The characteristics do not change except in the discontinuity (Courant and Hilbert, 1962,
p.408). This underlying mathematical principle in the CSL method not only makes it both
mathematically and physically sound, but also makes it more accurate than the conventional
semi-Lagrangian method where only the fluid velocity is used for tracking. When the dis-
continuity appears, multiple solutions may exist near the discontinuity. This may pose some
difficulties, especially in the multi-dimensional problems. In this case, entropy conditions
could be invoked (Lax, 1973).

For the 1-D shallow water model, a more compact form of characteristic variables can
be used (Erbes, 1993; Durran, 1999). However, we have chosen the present form to be
consistent with the 1-D non-hydrostatic atmospheric model and to readily extend it to the
multi-dimensional problems. It should also be noted that relevant discussion on the method
of characteristics for the 1-D systems can be found in Gustafsson et al. (1995, p.309–310).

The two-time-level scheme is used for the temporal discretization to avoid the well-known
computational mode in the three-time-level scheme. The simple Picard iteration method is
chosen in the solution. Only a few (< 5) iterations are necessary to achieve accurate results.
No time filter is used because there is no computational mode for the two-time-level scheme.
The simple linear interpolation method is used for both spatial or temporal interpolations.
Other integration schemes, such as a 4th-order Runge-Kutta (RK4) scheme, could also be
used. Small and sub-cycling time-steps could also be used for the fast-moving characteristic
waves if necessary.

The prototype Rossby adjustment problem studies the time evolution of an initially
motionless fluid layer with a discontinuity in the height field. The initial conditions are
(Gill, 1982, p.192):

u(x, 0) = v(x, 0) = 0
h(x, 0) = H − η0 sgn(x)

where the sgn(x) is the sign function (sign of x) defined by

sgn(x) =

{
1, for x > 0,

−1, for x < 0,

and the other parameters are: c̄ =
√

gH =10 m s−1, f = 10−4 s−1. The so-called Rossby
radius of deformation is given by a = c̄/|f | =10 m s−1/10−4 s−1 = 105 m=100 km. The
analytical solution for the linear problem is given in Gill (1982, p.198–201). The numerical
solutions of the nonlinear geostrophic adjustment problem can be found in Kuo and Povani
(1997), where a more sophisticated numerical package is used.

A uniform grid with grid size ∆x = 103 m was used, and the time step is ∆t = 4∆x/c̄.
This time step was chosen so that the damping due to the linear interpolation can be
reduced/eliminated for the linear problem. For more complicated problems of general ap-
plications, other shape-preserving or monotonic interpolation schemes, such as those of
Williamson and Rasch (1989), could be used.

The CSL solutions of the Rossby adjustment problem are shown in Figs. 1–3, where
η = h −H. The solutions are shown at time intervals of 50∆t, where ∆t is the time step;
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Fig. 1: The CSL solutions of the Rossby adjustment problem: η/η0 at time intervals of
2f−1. The solid curves are for the nonlinear problem, and the dashed curves are for the
linear problem.

or 2f−1, where f is the Coriolis parameter. The solid curves are for the nonlinear problem,
and the dashed curves are for the linear problem. The x-coordinate is scaled by the Rossby
radius of deformation a, while η is scaled by η0, and u and v are scaled by (η0/H)c̄. For the
linear calculations, the solutions are almost indistinguishable from the analytical solutions.
The nonlinear effects, e.g., advection by u, are also clearly captured by the CSL method.
Thus, accurate solutions were obtained with little effort using the CSL method.

3 THE CSL METHOD FOR THE 1-D NON-HYDROSTATIC ATMOSPHERIC
MODEL

The CSL method outlined in the previous section is now applied to the 1-D non-
hydrostatic atmospheric model to solve the hydrostatic adjustment problem. The model
is a fully-compressible, non-hydrostatic atmospheric model. With a heating source in the
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Fig. 2: The CSL solutions of the Rossby adjustment problem: u/[(η0/H)c̄] at time intervals
of 2f−1. The solid curves are for the nonlinear problem, and the dashed curves are for the
linear problem.

vertical column, the 1-D non-hydrostatic atmospheric model equations can be written as

∂V

∂t
+ C

∂V

∂z
= Q, (3.1)

where

V =




ρ
w
Θ


 , C =




w ρ 0

0 w
γRπ

ρ
0 Θ w


 , Q =




0
−g

ρQ̇


 .

The notation is standard: w is the vertical velocity, ρ is the air density, Θ = ρθ, θ is the
potential temperature, π is the Exner function defined as π = (p/p0)κ, κ = R/cp, and
γ = cp/cv = 1.4 is the ratio of the heat capacities for dry air. Q̇ is the heating function,
where one form is given in (3.6). Using the procedures outlined in the previous section, we
obtain the it characteristic form equations of (3.1) as follows:
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Fig. 3: The CSL solutions of the Rossby adjustment problem: v/[(η0/H)c̄] at time intervals
of 2f−1. The solid curves are for the nonlinear problem, and the dashed curves are for the
linear problem.

∂W

∂t
+




w 0 0
0 w + c 0
0 0 w − c


 ∂W

∂z
= F, (3.2)

where c =
√

γRπ
ρ Θ is the speed of sound, and the characteristic variables δW and the forcing

terms F are

δW =




δρ− γRπ

c2
δΘ

δw +
γRπ

ρc
δΘ

δw − γRπ

ρc
δΘ




, F =




F1

F2

F3


 =




−ρQ̇

(
γRπ

c2

)

−g + ρQ̇

(
γRπ

ρc

)

−g − ρQ̇

(
γRπ

ρc

)




.
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The Lagrangian form of (3.1) is

D1ρ

Dt
− ρ

Θ
D1Θ
Dt

= F1, (3.3)

D2w

Dt
+

c

Θ
D2Θ
Dt

= F2, (3.4)

D3w

Dt
− c

Θ
D3Θ
Dt

= F3, (3.5)

where

D1

Dt
=

∂

∂t
+ w

∂

∂z
,

D2

Dt
=

∂

∂t
+ (w + c)

∂

∂z
,

D3

Dt
=

∂

∂t
+ (w − c)

∂

∂z
.

Equations (3.3)–(3.5) are solved along the three characteristics, respectively:

C0 : dz/dt = w, C+ : dz/dt = w + c, C− : dz/dt = w − c.

Therefore, in the CSL method, the acoustic waves are treated explicitly, the same as for the
other waves. The Lagrangian time-difference operator of (A10) is used for the total time
derivatives, and the trajectory-average operator of (A12) is used for the coefficients and
the right hand side forcing terms. Note that deviations ρ′ and Θ′ from a time invariant,
hydrostatically balanced reference state ρ̄(z) and Θ̄(z) can be defined such that ρ = ρ̄(z)+ρ′

and Θ = Θ̄(z)+Θ′, and Eqs. (3.3)–(3.5) can then be solved for ρ′ and Θ′. No approximation
is introduced in this procedure.

The prototype hydrostatic adjustment problem considers the response of a horizontally
homogeneous, initially hydrostatic, isothermal atmosphere to an instantaneous heating in
the middle of the atmosphere column. The heating function has the following form (Bannon,
1995):

Q̇ =
θ0

ρ0cpT0
Qh, (3.6)

where
Qh =

cv

R
∆p[H(z + a)−H(z − a)]δ(t)

is the heating per unit volume. H is the Heaviside step function and δ(t) is the Dirac delta
function. δ(t) has a dimension of t−1, and in the temporal discretization, it is replaced by
1/∆t, where ∆t is the time step. The analytical solutions of the linear problem can be found
in Bannon (1995) and Sotack and Bannon (1990).

The CSL solutions of the linear hydrostatic adjustment problem are shown in Figs. 4–6.
The CSL solutions of the nonlinear hydrostatic adjustment problem are shown in Figs. 7–9.
In these calculations, uniform grids with grid size ∆z = 200 m were used. The time step is
∆t = ∆z/c̄s, although a larger time step could be used without causing any computational
instability.

All results are for ∆p=100 Pa, unless otherwise stated. The results w, ρ′, and θ′ are
scaled by ∆w = ∆p/(2ρ∗c̄s),∆ρ = ∆p/(gHs), and ∆θ = T0∆p/p∗, respectively. The sub-
script * denotes a constant reference value, and c̄s = (γRT0)1/2 is the speed of sound and
T0 = 267. The units of the z-coordinate are in km. Figure 4 also compares the CSL solution
(solid curves) and the analytical solutions (dashed curves; Eq. (3.5) in Bannon, 1995). The
effects of nonlinearity are shown by comparing solutions with ∆p = 100 Pa and ∆p= 1000
Pa in Figs. 7–9.
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Fig. 4: The CSL and analytical solutions of the linear hydrostatic adjustment problem:
w/∆w at time steps 10, 30, and 50. The solid curves are for the CSL solutions, the dashed
curves are for the analytical solutions.

Fig. 5: The CSL solutions of the linear hydrostatic adjustment problem: ρ′/∆ρ at time
steps 10, 30, and 50.



30 Chinese Journal of Atmospheric Sciences

Fig. 6: The CSL solutions of the linear hydrostatic adjustment problem: θ′/∆θ at time
steps 10, 30, and 50.

Fig. 7: The CSL solutions of the nonlinear hydrostatic adjustment problem: w/∆w at time
steps 10, 30, and 50. The solid curves are for case ∆p = 100, and the dashed curves are for
case ∆p = 1000.
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Fig. 8: The CSL solutions of the nonlinear hydrostatic adjustment problem: ρ′/∆ρ at time
steps 10, 30, and 50. The solid curves are for case ∆p = 100, and the dashed curves are for
case ∆p = 1000.

Fig. 9: The CSL solutions of the nonlinear hydrostatic adjustment problem: θ′/∆θ at time
steps 10, 30, and 50. The solid curves are for case ∆p = 100, and the dashed curves are for
case ∆p = 1000.
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Fig. 10: The CSL and SISL solutions of the nonlinear hydrostatic adjustment problem:
w/∆w at time steps 10, 30, and 50. The solid curves are for the CSL solutions, and the
dashed curves are for the SISL solutions.

4 COMPARISON WITH THE SISL METHOD

In this section, the CSL method is compared with the SISL method. The details of the
SISL method are given in the Appendix. Unlike the CSL method, the SISL method treats
the acoustic waves implicitly to ensure that a large time step can be used, and it uses only
wind for the Lagrangian tracking. In the calculations presented below, fixed upper and lower
boundary conditions are used.

Figures 10–12 compare the CSL and SISL solutions of the nonlinear hydrostatic adjust-
ment problem. The improvements of the CSL solutions over the SISL solutions are that the
CSL method can handle problems with sharp gradients easily and can obtain accurate so-
lutions with less numerical oscillations efficiently. Note that this improvement is not due to
the different upper or lower boundary conditions used in the solutions, because the solutions
are not influenced by the boundary conditions yet.

5 OPEN BOUNDARY CONDITIONS

When the equations are written in the characteristic form, it is convenient to implement
the so-called open boundary conditions. In the present case, the flows are subcritical (u < c)
or subsonic (w < cs). Only one boundary condition is needed at each boundary, that is,
when the backward characteristic wave tracking is started from the boundary within each
time step. In such a case, the value at the boundary can be approximated by interpolation
from the value at time t and the value at time t + ∆t (from the previous iteration). This is
the only approximation, and it is consistent with the idea that there is no flux of information
into the domain of computation. The numerical results indicate this simple scheme for open
boundary conditions is an appropriate implementation.
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Fig. 11: The CSL and SISL solutions of the nonlinear hydrostatic adjustment problem:
ρ′/∆ρ at time steps 10, 30, and 50. The solid curves are for the CSL solutions, and the
dashed curves are for the SISL solutions.

Fig. 12: The CSL and SISL solutions of the nonlinear hydrostatic adjustment problem:
θ′/∆θ at time steps 10, 30, and 50. The solid curves for the CSL solutions, and the dashed
curves for the SISL solutions.
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Fig. 13: The CSL and analytical solutions of the linear Rossby adjustment problem:
u/[(η0/H)c̄]. The solid curves are for the analytical solutions, and the dashed curves are
for the CSL solutions. U5 is the the right boundary, and U4 and U3 are 1/8L and 1/4L
away from the right boundary, respectively, where L is the total length of the computational
domain. The time is scaled by the Coriolis parameter f .

Figure 13 compares the results of the CSL method and the analytical solution of the 1-D
linear Rossby adjustment problem. It shows that the numerical solution is very close to the
analytical solutions. In the interior points, the numerical solutions are almost indistinguish-
able from the analytical solutions. Figure 14 compares the CSL solutions with the analytical
solutions of the linear hydrostatic adjustment problem.

The open boundary conditions implemented in this study belong to the so-called ‘per-
fectly non-reflecting boundary conditions’ category. The partially non-reflecting boundary
conditions similar to Poinsot and Lele (1992) show no improvement in the solutions, or even
make them worse sometimes, and will not be shown here.

With fixed boundary conditions in the SISL method, the solutions can be contaminated
quickly by the reflecting boundary waves. The open boundary conditions may also be
implemented similarly in the SISL method. However, this implementation cannot solve all
the problems in this case because the acoustic waves are not treated explicitly. That is,
we still need to implement open boundary conditions in solving the elliptic equation (A21)
for the acoustic modes. Durran (2001) gives an interesting discussion on open boundary
conditions.

The easy and physically-sound implementation of the open boundary conditions make the
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Fig. 14: The CSL and analytical solutions of the linear hydrostatic adjustment problem:
w/∆w. The solid curves are for the CSL solutions, and the dashed curves are for the
analytical solutions. The time is scaled by the acoustic cutoff frequency Na = c̄s/(2Hs),
where c̄s is the speed of sound and Hs = RT0/g is the scale height.

CSL method more advantageous over the conventional semi-Lagrangian methods, both for
regional atmospheric modeling and for global atmospheric modeling where open boundary
conditions may be used at the top of the model. This implementation is a better choice than
the artificial diffusive boundary conditions that are usually used in the atmospheric models.

6 EXTENSION TO THE MULTI-DIMENSIONAL PROBLEMS

In this section, the extension of the CSL method to the multi-dimensional problems is
discussed. Although in the 1-D case only left or right characteristic directions exist, in the
multi-dimensional cases there are an infinite number of characteristic directions that could
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be used for the characteristic wave tracking. The best choice is to choose the characteristic
directions that can minimize the coupled terms. This is illustrated with the 2-D shallow
water equations.

The 2-D inviscid, nonlinear shallow water model equations can be written in the form:

∂V

∂t
+ A

∂V

∂x
+ B

∂V

∂y
= Q, (6.1)

where

V =




u
v
h


 , A =




u 0 g
0 u 0
h 0 u


 , B =




v 0 0
0 u g
0 h v


 , Q =




+fv
−fu

0


 .

The notation is standard. As in the 1-D case, the CSL method first transforms Eq. (6.1)
into its characteristic form through a diagonalization procedure in the following way:

1) Solve the eigenvalue equation

|λI − (Akx + Bky)| = 0 (6.2)

to get three real eigenvalues, which, by definition of hyperbolicity, always exist (e.g., Ku-
likovskii et al., 2001, p.2):

λ1 = ukx + vky, λ2 = ukx + vky + c, λ3 = ukx + vky − c, (6.3)

where c =
√

gh, and kx and ky are the Cartesian components of the unit vector k ;
2) Compose the diagonalization matrix L−1 by the left eigenvectors:

L−1 =




ky −kx 0
kx ky +

c

h
kx 0 − c

h


 , (6.4)

and the matrix L by the right eigenvectors in the column:

L =




ky
kx

2
ky

2
−kx

ky

2
kx

2
0

h

2c
− h

2c




; (6.5)

3) Define the characteristic variables δW as:

δW = L−1δV =




kyδu− kxδv

kxδu + kyδv +
c

h
δh

kxδu + kyδv − c

h
δh


 ; (6.6)

4) The characteristic form equations become:

∂W

∂t
+ L−1AL

∂W

∂x
+ L−1BL

∂W

∂y
= L−1Q, (6.7)
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or

∂W

∂t
+




u 0 0
0 u + ckx 0
0 0 u− ckx


 ∂W

∂x
+




v 0 0
0 v + cky 0
0 0 v − cky


 ∂W

∂y
+ S = F, (6.8)

where the coupled terms, S, are given by

S =




S1

S2

S3


 =




g(ky
∂h

∂x
− kx

∂h

∂y
)

+c[kyky
∂u

∂x
− kxky(

∂v

∂x
+

∂u

∂y
) + kxkx

∂v

∂y
]

−c[kyky
∂u

∂x
− kxky(

∂v

∂x
+

∂u

∂y
) + kxkx

∂v

∂y
]




, (6.9)

and the forcing terms F are given by:

F = L−1Q =




F1

F2

F3


 =




kyfv − kxfu
kxfv − kyfu
kxfv − kyfu


 . (6.10)

We write Eq. (6.8) in the Lagrangian form as follows:

ky
D1u

Dt
− kx

D1v

Dt
= F1 − S1, (6.11)

kx
D2u

Dt
+ ky

D2v

Dt
+

c

h

D2h

Dt
= F2 − S2, (6.12)

kx
D3u

Dt
+ ky

D3u

Dt
− c

h

D3h

Dt
= F3 − S3, (6.13)

where

D1

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
,

D2

Dt
=

∂

∂t
+ (u + ckx)

∂

∂x
+ (v + cky)

∂

∂y
,

D3

Dt
=

∂

∂t
+ (u− ckx)

∂

∂x
+ (u− cky)

∂

∂y
.

Equations (6.11)–(6.13) are the solved along the three characteristic curves, respectively:

C0 : dx/dt = u, dy/dt = v;
C+ : dx/dt = u + ckx, dy/dt = v + cky;
C− : dx/dt = u− ckx, dy/dt = v − cky.

As noted earlier, there are an infinite number of characteristic directions, k = (kx, ky), that
could be used for the characteristic wave tracking. The optimal local characteristic directions
can be so chosen that the coupled terms, S1, S2 and S3, can vanish or be minimized and
that a locally decoupled or nearly-decoupled system can be obtained. Deconinck et al.
(1986) presented a procedure on how the decoupling can be done or how the S-terms can
be minimized. A general minimization algorithm determining the optimal k directions will
be developed and reported on a subsequent paper. Discussion on the characteristic form of
the multi-dimensional Euler equations can also be found in Hirsch (1990, Chapter 16).
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The above 2-D CSL method is demonstrated to solve the idealized circular dam-break
problem (e.g., Toro, 2001). Assume a circular dam of radius R =5.0 m centered in a square
computational domain of 40 m×40 m. The initial velocity fields are u(x, y, 0) = v(x, y, 0) =
0, and the initial water depth is

h(x, y, 0) =

{
hins = 1.0 m, if (x− xc)2 + (y − yc)2 6 R2,

hout = 0.5 m, if (x− xc)2 + (y − yc)2 > R2,
,

where (xc, yc) is the center of the circular dam. Both sharp gradients and shock waves exist
in this problem.

For axisymmetric flow as in the idealized circular dam-break problem, the governing
equations can also be written in the 1-D form in the radial direction r:

∂u

∂t
+ u

∂u

∂r
+ g

∂h

∂r
= 0, (6.14)

∂h

∂t
+ u

∂h

∂r
+ h

∂u

∂r
= −hu

r
. (6.15)

In the CSL method, the above equations are written in the characteristic form:

D2u

Dt
+

c

h

D2h

Dt
= −cu

r
, (6.16)

D3u

Dt
− c

h

D3h

Dt
= +

cu

r
, (6.17)

where u is the radial velocity, and

D2

Dt
=

∂

∂t
+ (u + c)

∂

∂r
,

D3

Dt
=

∂

∂t
+ (u− c)

∂

∂r
.

Equations (6.16)–(6.17) are then solved along the two characteristics, respectively:

C+ : dr/dt = u + c, C− : dr/dt = u− c.

To compare the 1-D and 2-D solutions, 1000 grid points were used for the 1-D solutions,
and 200 × 200 grid points were used for the 2-D solutions. The time steps are 0.01 and
0.02 seconds, respectively. Figure 15 compares the 1-D and 2-D solutions of h and u at 0.7
s. The 1-D solution may be regarded as the exact solution. The 2-D solution is essentially
axisymmetric, so only the slice crossing the first and third quadrants is used for comparison.
The 2-D CSL solution captures the wave amplitude and speed fairly well. The numerical
results also show that the CSL implementation of the open boundary conditions extends
naturally to the 2-D problem.

The 2-D solutions shown in Fig. 15 were obtained by specifying the characteristic direc-
tions k in the outward radial directions. A general algorithm minimizing the S-terms will
be developed and numerical results from multi-dimensional non-hydrostatic modeling will
be reported subsequently.

7 SUMMARY AND CONCLUSIONS

We have illustrated the basic principle of a characteristic-based semi-Lagrangian (CSL)
method and the basic procedures of implementation. We have implemented the CSL method
to the 1-D shallow water model to solve the Rossby adjustment problem and the 1-D non-
hydrostatic atmospheric model to solve the hydrostatic adjustment problem. Transient
solutions for both linear and nonlinear problems are obtained and analyzed.
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Fig. 15: Comparison of the 1-D and 2-D solutions for the idealized circular dam-break
problem: h and u at time 0.7 s. The solid curves are for the high-resolution 1-D solution,
and the dashed curves are for the 2-D solution.

It has been shown that the CSL method can better handle problems with a sharp gra-
dient. Compared to the SISL method, accurate solutions with less numerical oscillations
can be efficiently obtained with the CSL method. Open boundary conditions can also be
readily implemented in the CSL method. Although it is also possible to implement a similar
open boundary condition setup in the semi-implicit scheme, the CSL method provides a
consistent approach to the solutions of open boundary problems.

Furthermore, errors in the observations could induce an imbalance in the initial condi-
tions for atmospheric models. The initialization procedure is usually used to remove the
unrealistic imbalance. We can expect that, by handling the fast-moving gravity waves and
acoustic waves more accurately, the CSL method could produce more realistic geostrophic
and hydrostatic adjustment in the models.

This study indicates that, although the SISL method may be preferred for solutions of the
incompressible hydrostatic atmospheric equations, the CSL method is potentially a better,
more natural choice for solutions of the fully-compressible, non-hydrostatic equations — the
CSL method better preserves the mathematical and physical properties of these systems.

The extension to the multi-dimensional problems is also discussed and a simple demon-
stration is presented. In addition to this work, we are also developing a general minimization
algorithm that treats both decoupling and solution procedures simultaneously, and we will
apply it to the general testing problems of non-hydrostatic atmospheric models, such as flow
over mountains or density currents.
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APPENDIX

A Semi-Implicit, Semi-Lagrangian Method for a 1-D Non-hydrostatic Atmospheric
Model

For comparison with the CSL method, a semi-implicit, semi-Lagrangian (SISL) method is de-
veloped for the 1-D non-hydrostatic atmospheric model. It is a two-time-level scheme. Otherwise,
it is similar to the SISL method used in the MC2 model (Tanguay et al., 1990).

The 1-D non-hydrostatic atmospheric equations can be written as

∂ρ

∂t
+ w

∂w

∂z
+ ρ

∂w

∂z
= 0, (A1)

∂w

∂t
+ w

∂w

∂z
+

γRπ

ρ

∂Θ

∂z
= −g, (A2)

∂Θ

∂t
+ w

∂Θ

∂z
+ Θ

∂w

∂z
= ρQ̇. (A3)

The notation is standard. Define
DF

Dt
=

∂F

∂t
+ w

∂F

∂z
,
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and a hydrostatic reference state (ρ̄, Θ̄), such that ρ′ = ρ− ρ̄, Θ′ = Θ− Θ̄. The 1-D non-hydrostatic
atmospheric model equations can then be written as

Dρ′

Dt
+ w

∂ρ̄

∂z
+ ρ̄

∂w

∂z
= Rρ, (A4)

Dw

Dt
+

γRπ̄

ρ̄

∂Θ′

∂z
+ g(

ρ′

ρ̄
− R

cv

Θ′

Θ̄
) = Rw, (A5)

DΘ′

Dt
+ w

∂Θ̄

∂z
+ Θ̄

∂w

∂z
= RΘ, (A6)

where

Rρ = −ρ′
∂w

∂z
, (A7)

Rw = −γR(
π

ρ
− π̄

ρ̄
)
∂Θ′

∂z
+ g(

ρ̄

ρ

π′

π̄
− R

cv

Θ′

Θ̄
) +

gρ′2

ρ̄ρ
, (A8)

RΘ = −Θ′
∂w

∂z
+ ρQ̇. (A9)

Define the Lagrangian time-difference, time-average, and trajectory-average operators as

Dψ

Dt
=

ψ(z, t)− ψ(z − λ, t−∆t)

∆t
, (A10)

ψ
t
= [(1 + ε)ψ(z, t) + (1− ε)ψ(z − λ, t−∆t)]/2, (A11)

R
traj
ψ = [Rψ(z, t) + Rψ(z − λ, t)]/2, (A12)

and the Lagrangian displacement as

λ = ∆t[w(z, t) + w(z − λ, t−∆t)]/2. (A13)

Applying (A10) to the first of, and (A11) to the rest of, the left-hand side terms of Eqs. (A5)–(A6);
and (A12) to the right-hand side of Eqs. (A5)–(A6), we can then obtain the two-time-level SISL
equations of the following form:

Qψ(z, t) = Pψ(z − λ, t−∆t) + ∆tR
traj
ψ , (A14)

where, for the Qψ terms at time t, we have

ρ′ +
1

2
(1 + ε)∆t(ρ̄

∂w

∂z
+ w

∂ρ̄

∂z
) = Qρ, (A15)

w +
1

2
(1 + ε)∆t(

γRπ̄

ρ̄
+ g

ρ′

ρ̄
− g

R

cv

Θ′

Θ̄
) = Qw, (A16)

Θ′ +
1

2
(1 + ε)∆t(Θ̄

∂w

∂z
+ w

∂Θ̄

∂z
) = QΘ, (A17)

and the Pψ terms at time (t−∆t) are

Pρ = ρ′ − 1

2
(1− ε)∆t(ρ̄

∂w

∂z
+ w

∂ρ̄

∂z
), (A18)

Pw = w − 1

2
(1− ε)∆t(

γRπ̄

ρ̄
+ g

ρ′

ρ̄
− g

R

cv

Θ′

Θ̄
), (A19)

PΘ = Θ′ − 1

2
(1− ε)∆t(Θ̄

∂w

∂z
+ w

∂Θ̄

∂z
), (A20)

and the Rψ are given by (A7)–(A9). Eliminating ρ′ and Θ′ from (A15)–(A17), we obtain an equation
for w at time t in the following form:

C1
∂2w

∂z2
+ C2

∂w

∂z
+ w = A1, (A21)
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where

C1 = −[
1

2
(1 + ε)∆t]2c̄2,

C2 = +[
1

2
(1 + ε)∆t]2g

cp

cv
,

A1 = Qw − 1

2
(1 + ε)∆t(

c̄2

Θ̄

∂QΘ

∂z
+ g

Qρ

ρ̄
− g

R

cv

QΘ

Θ̄
).

Discretization of (A21) gives a linear equation system with a tridiagonal matrix, which can be easily
solved to obtain w. Once we have w, we can solve (A15) and (A17) for ρ′ and Θ′, respectively.


