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[1] This paper presents the development and illustration of a numerical model of reaction-
based geochemical and biochemical processes with mixed equilibrium and kinetic
reactions. The objective is to provide a general paradigm for modeling reactive chemicals
in batch systems, with expectations that it is applicable to reactive chemical transport
problems. The unique aspects of the paradigm are to simultaneously (1) facilitate the
segregation (isolation) of linearly independent kinetic reactions and thus enable the
formulation and parameterization of individual rates one reaction by one reaction when
linearly dependent kinetic reactions are absent, (2) enable the inclusion of virtually any
type of equilibrium expressions and kinetic rates users want to specify, (3) reduce problem
stiffness by eliminating all fast reactions from the set of ordinary differential equations
governing the evolution of kinetic variables, (4) perform systematic operations to remove
redundant fast reactions and irrelevant kinetic reactions, (5) systematically define chemical
components and explicitly enforce mass conservation, (6) accomplish automation in
decoupling fast reactions from slow reactions, and (7) increase the robustness of numerical
integration of the governing equations with species switching schemes. None of the
existing models to our knowledge has included these scopes simultaneously. This model
(BIOGEOCHEM) is a general computer code to simulate biogeochemical processes in
batch systems from a reaction-based mechanistic standpoint, and is designed to be easily
coupled with transport models. To make the model applicable to a wide range of problems,
programmed reaction types include aqueous complexation, adsorption-desorption, ion-
exchange, oxidation-reduction, precipitation-dissolution, acid-base reactions, and
microbial mediated reactions. In addition, user-specified reaction types can be
programmed into the model. Any reaction can be treated as fast/equilibrium or slow/
kinetic reaction. An equilibrium reaction is modeled with an infinite rate governed by a
mass action equilibrium equation or by a user-specified algebraic equation. Programmed
kinetic reaction rates include multiple Monod kinetics, nth order empirical, and elementary
formulations. In addition, user-specified rate formulations can be programmed into the
model. No existing models to our knowledge offer these simultaneous features.
Furthermore, most available reaction-based models assume chemical components a priori
so that reactions can be written in basic (canonical) forms and implicitly assume that fast
equilibrium reactions occur only for homogeneous reactions. The decoupling of fast
reactions from slow reactions lessens the stiffness typical of these systems. The explicit
enforcement of mass conservation overcomes the mass conservation error due to
numerical integration errors. The removal of redundant fast reactions alleviates the
problem of singularity. The exclusion of irrelevant slow reactions eliminates the issue of
exporting their problematic rate formulations/parameter estimations to different
environment conditions. Taking the advantage of the nonuniqueness of components, a
dynamic basis-species switching strategy is employed to make the model numerically
robust. Backward basis switching allows components to freely change in the simulation of
the chemistry module, while being recovered for transport simulation. Three example
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1. Introduction

[2] While the coupling of hydrologic transport and chem-
ical reaction models is an active area of research, the
development of chemical reaction batch models has
received much less attention. Chemical reactions can be
divided into two classes [Rubin, 1983]: (1) those that are
‘‘sufficiently fast’’ and reversible, so that local equilibrium
may be assumed and (2) those that are ‘‘insufficiently fast’’
and/or irreversible, where the local equilibrium formulation
is inappropriate. The modeling of equilibrium chemistry has
been well established. Some models for equilibrium chem-
istry have come into wide use, such as WATEQ [Truesdell
and Jones, 1974], MINEQL [Westall et al., 1976],
PHREEQE [Parkhurst et al., 1980], EQ3/6 and their deriv-
atives [see Wolery, 1992, and references therein]. However,
more complex types of biochemical and geochemical reac-
tions exist in the subsurface or surface waters that cannot be
described by equilibrium chemistry alone [see Friedly and
Rubin, 1992, and references therein]. Therefore the model-
ing of equilibrium chemistry coupled with the kinetic
chemistry has become a necessity. There are quite a few
models, either stand-alone or being embedded in transport
codes, that can model mixed kinetic and equilibrium reac-
tions (e.g., model name unknown [Lin and Benjamin, 1990];
KEMOD [Yeh et al., 1995]; OS3D [Steefel and Yabusaki,
1996]; BIOKEMOD [Salvage and Yeh, 1998]; RAFT [Chi-
lakapati, 1995; Chilakapati et al., 2000]). All of these
chemistry modules have had varied scopes, and most have
limited capabilities in terms of rate equations for kinetic
reactions and reaction types for equilibrium reactions.
[3] A generic chemistry module to describe geochemical

and biochemical processes in batch systems is needed to
improve reactive transport models. Since qualitative geo-
chemical and biochemical processes must be conceptualized
quantitatively as a reaction network [Yeh et al., 2001a], a
reaction-based biogeochemical model is conceivably the
most generic approach to modeling these processes. This
paper presents the development and verification of a generic
numerical model (BIOGEOCHEM) using demonstrative
examples. The objective is to provide a general paradigm
for modeling reactive chemicals in batch systems, with the
expectation that this paradigm is applicable to reactive
transport systems.
[4] To make the model applicable to as wide a range of

problems as possible, BIOGEOCHEM embodies a com-
plete suite of reactions including aqueous complexation,
adsorption-desorption, ion-exchange, redox, precipitation-
dissolution, acid-base reactions, and microbial mediated
reactions. Any reaction can be treated as fast/equilibrium
or slow/kinetic reaction. An equilibrium reaction is modeled
with an infinite rate governed by a mass action equilibrium
equation or by a user-specified algebraic equation. A kinetic

reaction is modeled with a finite rate with microbial
mediated enzymatic kinetics, an elementary rate, or a
user-specified rate equation. None of the existing models
has encompassed this wide array of scopes.
[5] To make the model numerically robust, a dynamic

basis-species switching strategy is employed taking the
advantage of the nonuniqueness of components. Compo-
nents are free to change in the simulation of the chemistry
module, while being recovered for transport simulation by
backward basis switching.
[6] BIOGEOCHEM can be coupled with any hydrologic

transport model in the same way that PHREEQ or MINTEQ
can be coupled to transport models [Lin and Benjamin, 1990;
Steefel and Yabusaki, 1996]. A subsequent paper will present
a reactive biogeochemical transport model (HYDROBIO-
GEOCHEM) based on the same paradigm described in this
paper. Instead of performing the matrix decomposition on
species balance equations, one performs the decomposition
on species transport equations in transport systems. It is
expected that this matrix decomposition approach can be
used by others to modify their reactive transport models to
improve the design capabilities. For this reason, we will first
review some existing reactive transport models that could
have taken advantage of this generic paradigm before we
outline what will be included in this paper.
[7] Reactive chemical transport models have had varied

scopes. Conventional solute transport models often ignore
chemical speciation in the aqueous phase. Much attention
has been given to heterogeneous reactions with partitioning
between aqueous and sorbed chemicals represented by
linear (Kd approach) or nonlinear (Freundlich and/or Lang-
muir) isotherms [Yeh and Tripathi, 1991; Davis et al.,
2000]. Most models cannot account for the complete set
of biogeochemical processes (biogeochemical processes are
‘‘coupled organic and inorganic reaction processes’’ [Brun
and Engesgaard, 2002]) and they cannot be easily extended
to include mixed equilibrium/kinetic reactions or mixed
chemical/microbial reactions using mechanistic rate formu-
lations. From a geochemical point of view, approaches that
use empirical partitioning reactions can be considered as
reactive chemical transport because they are dealing with
adsorption/desorption phenomena. However, from a model-
ing point of view, we hesitate to classify such models as
reactive transport because a ‘‘true’’ reactive chemical trans-
port models should be based on the principles of thermody-
namics (for fast/equilibrium reactions) and chemical
kinetics (for slow/kinetic reactions). Many conventional
transport models [e.g., van der Zee and van Riemsdijk,
1987; Bosma and van der Zee, 1993; Tompson, 1993;
Toride et al., 1993; Brusseau, 1994] that have been pro-
claimed to be reactive transport models perhaps should not
be categorized as such.
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[8] True reactive chemical transport models have been
extensively documented. Many models couple simulation of
transport with equilibrium geochemistry [e.g., Miller and
Benson, 1983; Cederberg et al., 1985; Hostetler and Erick-
son, 1989; Narasimhan et al., 1986; Liu and Narasimhan,
1989a, 1989b; Griffioen, 1993; Yeh and Tripathi, 1991;
Cheng, 1995; Parkhurst, 1995; Parkhurst and Appelo,
1999]. Some models couple transport with kinetic geo-
chemistry for certain geochemical processes like precipita-
tion-dissolution [e.g., Lichtner, 1996; Steefel and Yabusaki,
1996; Suarez and Šimunek, 1996], adsorption [e.g., Theis et
al., 1982; Szecsody et al., 1998], redox [Lensing et al.,
1994; Saiers et al., 2000], or biodegradation [MacQuarrie
et al., 1990; Chen et al., 1992; Chang et al., 1993; Cheng
and Yeh, 1994; Wood et al., 1994].
[9] Models coupling transport with mixed equilibrium/

kinetic reactions have appeared since the mid-1990s [e.g.,
Steefel and Lasaga, 1994; McNab and Narasimhan, 1994,
1995; Salvage et al., 1996; Yeh et al., 1996; Abrams et al.,
1998; Chilakapati et al., 1998; Tebes-Stevens et al., 1998;
Salvage and Yeh, 1998; Yeh et al., 2001b; Brun and
Engesgaard, 2002]. For most models chemical components
must be selected a priori such that only limited reaction
network can be considered [e.g., Parkhurst, 1995; Par-
khurst and Appelo, 1999]. Most models have implicitly
assumed that equilibrium reactions occur only among aque-
ous species so that transport of components can be manually
decoupled from fast reactions [Steefel and Lasaga, 1994;
Lichtner, 1996; Tebes-Stevens et al., 1998; Parkhurst and
Appelo, 1999]. However, in a complicated reactive system,
the identification of component species may not be so easy
when there are many parallel kinetic reactions [Friedly and
Rubin, 1992; Chilakapati et al., 1998; Yeh et al., 2000].
Under such circumstances, matrix methods may be better
employed to define component species and derive govern-
ing equations to model mixed equilibrium/kinetic reactions.
There appears to be few general purpose transport models
that can simulate a generic reaction including both bio-
chemical and geochemical reactions, and mixed equili-
brium/kinetic reactions [Fang and Yeh, 2002]. Instead,
recent reactive biogeochemical transport models either add
geochemical reactions to biodegradation transport models or
add simple biodegradation reactions to geochemical trans-
port models [Brun and Engesgaard, 2002].
[10] This paper is organized as follows. In section 2, a

reaction network used to represent a biogeochemical system
is defined with a simple example. Possible difficulties in
using primitive or DAE (mixed differential/algebraic equa-
tion) approaches to modeling complex systems are heuris-
tically exposed. In section 3, a formal decomposition of the
reaction network, which results in a new numerical
approach to setting up and integrating differential equations,
will be presented using two sets of results (one from a
geochemist’s point view of components, the other with a
totally different designation of components). Advantages of
using this generic paradigm are discussed. In section 4,
reaction rate formulations for kinetic reactions are dis-
cussed. In section 5, the numerical solution of the governing
equations is outlined. In section 6, the general application of
BIOGEOCHEM is presented using three demonstrative
examples. In section 7, conclusions and discussions from
the current research are summarized.

2. Reaction Network

2.1. Definition

[11] Reactive systems are completely defined by specify-
ing reaction networks [Yeh et al., 2001a]. From a mathe-
matical point of view, a system of M ordinary differential
equations can be written for M chemical species in a
reactive, well-mixed batch system as

dCi

dt
¼ ri Nj ; i 2 M ð1Þ

where Ci is the concentration of the ith chemical species, t is
time, and rijN is the production-consumption rate of the ith
species due to N biogeochemical reactions. The determina-
tion of rijN and associated parameters is a primary challenge
in biogeochemical modeling. There are two general models
to formulate rijN: ad hoc and reaction-based models,
distinctions between which have been discussed extensively
[Yeh et al., 2001a]. It should be noted that equation (1) can
be easily extended to transport systems by replacing the
ordinary differential equation with a transport equation:
@Ci

@t þ L Cið Þ ¼ ri Nj where L is the advection-dispersion/
diffusion operator. Thus the framework provided in this
paper is also applicable to transport systems except that,
instead of equation (1), one employs the set of transport
equations. A subsequent paper will present the development
of a biogeochemical transport model (HYDROBIOGEO-
CHEM) using the same paradigm described here [Fang and
Yeh, 2002].
[12] In an ad hoc model, the production-consumption rate

of a species is described with an empirical function

dCi

dt
¼ ri Nj ¼ fi C1;C2; . . . ;CM; p1; p2; . . .ð Þ ð2Þ

where fi is the empirical function for the ith species and p1,
p2,. . . are rate parameters used to fit experimental data. The
ad hoc formulations and their associated fitting parameters
may be applicable only to the specific experiment tested,
because in these ad hoc approaches, the contribution of all
geochemical and biochemical processes is lumped and the
contribution from individual reactions is not explicitly
modeled. Many widely used models (e.g., WASP [Ambrose
et al., 1988] and QUAL2E [Barnwell and Brown, 1987],
and all WASP-based and QUAL2E-based water quality
modeling) have taken this approach. It is not difficult to see
that calibrated rate parameters using the ad hoc approach are
only applicable to the environmental condition under study
because the contribution from individual reactions are not
segregated. As a result, new calibrations have to be
performed for every studies under different environmental
conditions when a different set of reactions is the
contributing chemical processes.
[13] In a reaction-based model, the production-consump-

tion rates of M species are described by

dCi

dt
¼ ri Nj ¼

XN
k¼1

nik � mikð ÞRk; i 2 M ð3Þ

where, nik is the reaction stoichiometry of the ith species in
the kth reaction associated with the products, nik is the
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reaction stoichiometry of the ith species in the kth reaction
associated with the reactants, and Rk is the rate of the kth
reaction. Equation (3) is a statement of mass balance for any
species i in a batch system. It simply states that the rate of
change of mass of any species is due to all reactions that
produce or consume that species. This formulation can be
extended to transport systems by replacing the ordi-
nary differential equation with the transport equation:
@Ci

@t þ L Cið Þ ¼ ri Nj ¼
PN
k¼1

nik �mikð ÞRk. This partial differential equation
is then a statement of mass balance for any species at a point
in a transport system. It simply states that the rate of change
of mass of any chemical species at any point is due to the
net transport to or from the point and due to all chemical
reactions occurring at the point.
[14] In a reaction-based approach, the contribution from

all individual reactions is explicitly modeled. Thus a prop-
erly formulated and parameterized rate equation may still
find its application to a wide range of environmental
conditions. This is so because rate equations are description
of reactions and because under a different environmental
condition, only the reaction-rate equations (not the lumped
rate equations) associated with the reactions that are oper-
ative under the conditions are used. Thus a reaction-based
approach is superior to an ad hoc approach. A reaction
based approach using mechanistic rate formulations would
be the ultimate goal of biogeochemical modeling, though it
would be difficult to obtain.

2.2. Example

[15] Let us consider a simple system with the following
reaction network for nitrotriacetic acid (NTA), cobalt(II),
and microbial biomass, B (simplified from the one modeled
by Yeh et al. [1998]):

Hþ NTA !HNTA;ðR1Þ

an equilibrium reaction with R1 = 1;

CoNTA !Coþ NTA;ðR2Þ

an equilibrium reaction with R2 = 1;

CoNTAþ H !Coþ HNTA;ðR3Þ

a kinetic reaction, with its rate R3 that must be formulated;

HNTAþ H! B;ðR4Þ

irreversible microbial degradation reaction with its rate R4

that must be formulated, where R1, R2, R3, and R4 denote
the reaction number in the system and R1, R2, R3, and R4

denote the corresponding rates of reaction. This notation is
used throughout the paper. It is noted that we have
considered the rate of an equilibrium reaction infinity as
in R1 and R2.
[16] The concept that the rate of an equilibrium reaction is

infinity (not indeterminate) is very important. All reactions
in reality are kinetics and take time, however small, to reach
equilibrium. In the limit, it takes zero time to reach
equilibrium (the ‘‘zero time’’ is, of course, a mathematical
abstraction). With this abstraction, one uses the thermody-
namic approach to model a fast reaction resulting in the

concept of infinite rate, rather than uses the chemical kinetic
approach to model a fast reaction resulting in the concept of
indeterminate rate. Consider a simple system of three
species subject to one fast reaction as follows: A + B  ! C.
Using the reaction-based approach, we can write the follow-
ing three ordinary differential equations (ODEs) governing
the evolution of three species- concentrations for this

reactive system:
d A½ �
dt
¼ �R;

d B½ �
dt
¼ �R; ; and

d C½ �
dt
¼ R where

[A], [B], and [C ] are the concentrations of species A, B,
and C, respectively, and R is the reaction rate. From a kinetic
point of view, when the reaction is fast and quickly achieves
to equilibrium, we can formulate R as the asymptotic
approximation of the elementary rate with the backward
rate constant approaching infinity. With this asymptotic
formulation, the three ODEs become:

d A½ �
dt
¼ kb C½ � � Ke A½ � B½ �ð Þ;

d B½ �
dt
¼ kb C½ � � Ke A½ � B½ �ð Þ; and d C½ �

dt
¼ �kb C½ � � Ke A½ � B½ �ð Þ, where kb

and Ke are the very large (in the limit infinity) backward
rate constant and the fixed equilibrium constant, respec-
tively. Theoretically, one can solve these three ODEs to yield
the equilibrium concentrations, [A]e, [B]e, and [C]e, given the
initial concentrations, [A]o, [B]o, and [C]o. [At equilibrium,
the rate computed with R ¼ � lim

kb)1
kb C½ �e�Ke A½ �e B½ �e
� �

is
indeterminate.] In practice, this asymptotic approach is
extremely difficult to solve numerically because the system
is very stiff or infinitely stiff in the limit. Alternatively, from
a thermodynamic point of view, we do not have to formulate
the reaction rate R. Instead, we simply postulate that a fast
reaction reaches equilibrium instantaneously. The reaction is
then described with a thermodynamically consistent expres-
sion, for example: R = 1 9 [C] = Ke[A] [B] (or other
thermodynamically consistent algebraic expressions). (Note
this expression is not the same as to formulating R as
R ¼ � lim

kb)1
kb C½ � � Ke A½ � B½ �ð Þ a priori). R = 1 is a mathemat-

ical abstraction.
[17] An important question is then: is it an appropriate

abstraction? To answer this question, we need to find out:
whether R is infinity or not (i.e., R

?¼ 1) assuming that the
reaction reaches equilibrium instantaneously? Now one of
the system equations is [C] = Ke[A][B]. The other two
equations can be derived with algebraic manipulations of
the three ODEs to yield two component equations: [A] +
[C ] = [A]o + [C ]o and [B] + [C ] = [B]o + [C ]o. Given the
initial concentrations, [A]o, [B]o, and [C ]o, we solve these
three algebraic equations to yield three concentrations at
equilibrium, [A]e, [B]e, and [C ]e. The reaction rate is finally

computed with R ¼ d C½ �
dt
¼ C½ �e� C½ �o

�t¼0 ¼ 1 (keep in mind that
the reaction reaches equilibrium instantaneously, so �t = 0),
not with R ¼ � lim

kb)1
kb C½ �e�Ke A½ �e B½ �e
� �

that has never

entered into the picture in the thermodynamic approach.
Indeed, the reaction rate for an equilibrium reaction is
infinity, and the mathematical abstraction is an appropriate
one. In other words, when we model a fast reaction with a
thermodynamic expression, the rate corresponding to this
reaction is infinity when it is used in reaction-based mass
balance equations. This mathematical abstraction of treating
a fast rate as infinity is also valid and consistent for a system
with mixed equilibrium and kinetic reactions as shall be
addressed in the subsequent sections. As we shall see later,
the abstraction of an infinite rate is equivalent to saying that
the concentration of an equilibrium variable (the definition
of the equilibrium variable under mixed kinetic and
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equilibrium reactions will be given later) reaches its
equilibrium value instantaneously at any time. The
conceptualization of a fast reaction as having a rate of
infinity, when this rate is used in chemical kinetic equations,
is thus justified.
[18] In contrast, it has been argued by many authors [e.g.,

Lichtner, 1996] that the rate for an equilibrium reaction is
indeterminate. This argument has resulted from the
calculation of R using R ¼ � lim

kb)1
kb C½ �e�Ke A½ �e B½ �e
� �

. This

argument is logical if a fast reaction is modeled with the
chemical kinetic approach using the asymptotic approxima-
tion of an elementary rate. However, the argument is
incorrect when the fast reaction is modeled with the
thermodynamic approach. Since the rate R has not been
formulated a priori when a consistent thermodynamic
expression is directly used to model the fast reaction, the
rate cannot be computed with R ¼ � lim

kb)1
kb C½ �e�Ke A½ �e B½ �e
� �

,

but must be computed with R ¼ d C½ �
dt
¼ C½ �e� C½ �o

�t¼0 ¼ 1. Therefore
the argument that the rate of an equilibrium reaction is
indeterminate is flawed when a thermodynamic approach is
used to model the reaction.
[19] To distinguish the conceptual difference between

kinetic modeling and thermodynamic modeling of a fast
reaction, the equation, R ¼ � lim

kb)1
kb C½ �e�Ke A½ �e B½ �e
� �

, is

called a mass action kinetic equation while the equation, R =
1 9 [C]e = Ke[A][B] is called a mass action equilibrium
equation throughout this paper. The concept of infinite rates
for equilibrium reactions is used to facilitate the discussion
on the difficulties encountered in solving a set of ODEs
involving mixed fast/slow reactions in the following
section.
[20] The species charges of the reactions R1 through R4

are not included for simplicity of presentation. In this
system, the total number of species M = 6, and the total
number of reactions N = 4. From equation (3), the mass
balance equations for the reaction network reactions R1
through R4 can be written as

d H½ �
dt
¼ �R1 � R3 � R4 ð4aÞ

d NTA½ �
dt

¼ �R1 þ R2 ð4bÞ

d HNTA½ �
dt

¼ R1 þ R3 � R4 ð4cÞ

d Co½ �
dt
¼ R2 þ R3 ð4dÞ

d CoNTA½ �
dt

¼ �R2 � R3 ð4eÞ

d B½ �
dt
¼ R4 ð4f Þ

2.3. Difficulties in Solving Equations (4a) Through (4f )

[21] An analytical solution of equations (4a) through (4f )
is generally impossible, which makes numerical integration

attractive. The majority of existing reactive chemical models
has taken either a primitive approach (i.e., integrate equation
(3) directly) or a mixed differential and algebraic equations
(DAEs) approach. In a DAE approach, most models, with a
few exception [e.g., Friedly and Rubin, 1992; Chilakapati et
al., 1998], do not have the capability to automate the setup
of DAEs based on equations (4a) through (4f ). Instead, the
set of DAEs is manually and directly obtained based on the
reactive system [e.g., Liu et al., 2001]. For the reactive
network R1 through R4, one can easily set up two mass
action equilibrium equations governing the fast reactions
(refer to equations (6a) and (6b)), an ordinary differential
equation governing the slow/kinetic reaction (refer to
equation (6c)), and three component equations governing
three mass conservation of TOTH, TOTCo, and TOTNTA

(refer to equations (6d), (6e), and (6f )). This system of
DAEs is then numerically integrated simultaneously. The
manual and direct setup of mass action equilibrium
equations, ordinary differential equations, and mass con-
servation equations is easy for this simple system. For a
generic system, with many fast and slow reactions including
parallel reactions, a manual setup will be difficult even for
experienced modelers and/or chemists. Under such circum-
stances, a better way is to automate the generation of a new
but equivalent governing set of equations [Friedly and
Rubin, 1992; Chilakapati et al., 1998; Yeh et al., 2001a].
Another problem is that when fast reactions are not written
in basic form (a reaction is defined as basic in this paper
when all reactants are component species and includes only
one product species), they are not easy to decouple from
slow reactions. Clearly, a systematic approach is needed to
achieve the mission of decoupling (i.e., eliminating fast
reactions from simultaneous solution).
[22] In a primitive approach, direct numerical integration

of the system of ODEs is performed using very large
backward and forward rate constants (with their ratio
defining the equilibrium constant) to mimic the rates of
fast/equilibrium reactions. Several numerical difficulties can
be encountered in this approach. First, the reaction rates of
N reactions can, in general, range over several orders of
magnitude. The time step size used in numerical integration
is dictated by the largest reaction rate among N reactions. If
at least one of the reactions is fast/equilibrium, its rate is
infinitely large. As a result, the time step size must be
infinitely small, which makes integration impractical. For
example, in equations (4a) through (4e), R1 and R2 are
infinitely large, which dictates the use of an infinitely small
time step for numerical integration. Second, physics dictates
that the number of linearly independent reactions must be
less than the number of species. This implies that there must
be one or more chemical components whose mass must be
conserved during the reactions. For example, there are three
linearly independent reactions in the above reaction net-
work. Thus there must be three components (NC = M � NI).
If Co, H, and NTA are selected (at the discretion of a user)
as the three chemical components, then the TOTCo, TOTH,
and TOTNTA, defined in next section, must be invariant. The
direct numerical integration of equations (4a) through (4f )
yields the solution of all six species assuming one can afford
the use of an infinitely small time step size. Because of
numerical errors, there are no assurances that TOTCo,
TOTH, and TOTNTA, as defined in equations (6d) through

FANG ET AL.: A GENERAL PARADIGM TO MODEL BIOGEOCHEMICAL PROCESSES HWC 2 - 5



(6f), respectively, are invariant when the primitive set of
equations are integrated directly. Similarly, in case of trans-
port systems, even without spatial discretization errors, there
are no assurances that TOTCo, TOTH, and TOTNTA obtained
from solving the systemof primitive PDEs (partial differential
equations) will satisfy the component transport equations.
[23] Third, if more than one equilibrium reactions are

involved, there is no way to define the subtraction or addition
of infinity. For example, in equation (4b), both R1 and R2 are
infinitely large, so how can one interpret (�R1 + R2)? Fourth,
redundant fast/equilibrium reactions must be removed from
consideration, otherwise the system would become singular
or over-constrained. Redundant reactions can easily be
detected and excluded from consideration manually when
the system is simple and components are chosen a priori.
When there are many fast/slow reactions, redundancies are
not easy to detect and a systematic way must be employed to
detect them. Fifth, the inclusion of irrelevant slow/kinetic
reactions makes their rate formulations and parameter deter-
minations meaningless because they are insensitive to the
system. Because of their insensitivity, any rate formulation
and parameter estimate are as good as any others. As a result,
their rate formulations and parameter estimates are not true
descriptions of these rates. Hence these rate formulations and
parameters are not portable to other conditions, when they are
relevant, unless one is lucky enough to have coincidently
come up with true rate formulations and parameters. There-
fore it is desirable to exclude these irrelevant reactions with a
systematic approach.
[24] Sixth, which is the most important difficulty, even if

all reactions are slow/kinetic, their rates are coupled via the
concentration-versus-time curves of all species. They can-
not be formulated and parameterized one reaction by one
reaction independently of each other.
[25] While a DAE approach can overcome the first diffi-

culty of system stiffness, it greatly increases the computa-
tional burdens when there are numerous fast reactions or if
the model is coupled with transport when hundreds or
thousands of DAE problems must be solved. A DAE
approach is definitely able to alleviate the second difficulty
of mass balance error as it also explicitly enforces mass
conservation. The problem is that the number of species that
must be included in a component equation is not obvious and
may be specified incorrectly when many parallel reactions
are involved. The issues related to the third, fourth, and fifth
difficulties are eliminated from a DAE approach only if all
reactions are written in basic form. For a realistic system it
would be difficult to write all reactions in basic form, thus the
DAE approach will be demanding to address these issues.
Finally, a DAE approach definitely cannot resolve the sixth
difficulty related to kinetic rate coupling.
[26] In spite of the difficulties outlined above, the major-

ity of literature has taken the primitive approach of directly
integrating the system of ODEs [e.g., McNab and Nara-
simhan, 1993, 1994; Chilakapati, 1995; Saiers et al., 2000]
or the DAE approach [e.g., Miller and Benson, 1983;
Chilakapati et al., 1998; Liu et al., 2001]. Neither the
primitive nor the DAE approaches will pose computational
burdens when the system is small, for example, when
modeling laboratory experiments [e.g., Lin and Benjamin,
1990; Szecsody et al., 1994, 1998]. However, for large
problems or when the reactive chemical model is intended

to couple with hydrologic transport, a systematic approach
that can overcome the above difficulties is needed. This
paper presents the development of such a model using the
well-known Gauss-Jordan matrix decomposition.

3. Decomposition of Reaction Network

[27] Equations (4a) through (4f) govern the evolution of
six species and contain both fast and slow reactions on the
right hand sides. Obviously, the above system of equations
is very stiff if fast reactions are modeled with mass action
kinetic equations because the rate constants are very large
and infinity in the limit. To reduce the stiffness of the
system, a direct thermodynamic approach may be employed
to model the two fast reactions; then two of the above ODEs
may be replaced by two thermodynamically consistent
equilibrium expressions (mass action equilibrium equations
or user- specified algebraic equations). But difficulties still
exist. First, we do not know which two ODEs should be
replaced (i.e., we do not know how to define the subtraction
or addition of infinity). Second, even if we know which two
to replace, the remaining ODEs still contain fast reactions
and the system is still stiff. Therefore a systematic way must
be provided to reduce the system of equations such that (1)
no more than one fast reaction is allowed in any reduced
ODE and (2) any fast reaction is not allowed to appear in
more than one reduced ODE. These two constraints can be
met if and only if all fast reactions are linearly independent.
The use of Gauss-Jordan reduction on the matrix made up
of only fast reactions can determine if all fast reactions are
linearly independent. During reduction process, any reac-
tion detected to be dependent reaction must be removed and
the constraints can be satisfied. With these constraints, the
number of reduced ODEs that contain fast rates will be
equal to the number of nonremoved fast reactions after the
reduction. Any reduced ODE that contains one and the only
one linearly independent fast reaction may still contain other
slow reactions that are linearly dependent on this fast
reaction. However, because the rates of all slow reactions
are conceptualized infinitely small compared to the rate of
the fast reaction, these rates can be discarded and the
reduced ODE can be replaced by the corresponding equi-
librium expression. This resolves the problem of not know-
ing which equation is to be replaced. The replacement can
be done for every reduced ODE in which the number of fast
reactions is only one. After the completion of the replace-
ment, the remaining ODEs will no longer contain any fast
reactions, and the problem of stiffness is resolved. The
reduction can be achieved via the Gauss-Jordan decompo-
sition of the reaction matrix which will be presented in the
following sections.

3.1. Description of Reaction Network Decomposition

[28] As stated in section 2, to make possible the formu-
lation of rate equations one reaction by one reaction and to
enable robust and efficient numerical integration of equation
(3), a systematic approach rather than the primitive or DAE
approaches is necessary. The approach can be achieved with
a diagonalization of equation (3). Equation (3) written in
matrix form can be decomposed based on the type of
biogeochemical reactions via Gauss-Jordan column reduc-
tion of the reaction matrix [Chilakapati, 1995; Steefel and
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MacQuarrie, 1996; Yeh et al., 2001a]. Each column of the
reaction matrix is made up of reaction stoichiometries of a
reaction. To perform column reduction is to determine a
pivot element, and use a matrix row operation to convert the
column containing the pivot element into a unit column.
The example from section 2 is used to illustrate the
decomposition and demonstrate how the difficulties pre-
sented earlier can be overcome.
[29] The system of equations (4a) through (4f ) written in

matrix form is

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

�1 0 �1 �1
�1 1 0 0

1 0 1 �1
0 1 1 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ð5Þ

The decomposition of equation (5) is not unique. Step-by-
step decomposition procedures for this simple example are
given in Appendix A. For complex systems, the decom-
position procedures are provided within the BIOGEO-
CHEM preprocessor (description in section 3.2). Two
different decompositions are described and compared
below.
3.1.1. Decomposition I
[30] One possible decomposition, when choosing Co, H,

and NTA as chemical components, results in the following
set of six equations for the six species (Appendix A):

d HNTA½ � þ B½ �ð Þ
dt

¼ R1 þ R3 :
d HNTA½ � þ B½ �ð Þ

dt
� R1 ¼ 1

9 HNTA½ � ¼ Ke
1 H½ � NTA½ � ð6aÞ

d CoNTA½ �
dt

¼ �R2 � R3 :
d CoNTA½ �

dt
� �R2 ¼ �1

9 Co½ � NTA½ � ¼ Ke
2 CoNTA½ � ð6bÞ

d B½ �
dt
¼ R4 ð6cÞ

d H½ � þ HNTA½ � þ 2 B½ �ð Þ
dt

¼ 0) TOTH ¼ H½ � þ HNTA½ �

þ2 B½ � ¼ const ð6dÞ

d NTA½ � þ HNTA½ � þ CoNTA½ � þ B½ �ð Þ
dt

¼ 0

) TOTNTA ¼ NTA½ � þ HNTA½ � þ CoNTA½ � þ B½ � ¼ const

d Co½ � þ CoNTA½ �ð Þ
dt

¼ 0) TOTCo ¼ Co½ � þ CoNTA½ � ¼ const

ð6f Þ

The two variables ([HNTA] + [B]) and [CoNTA] in the
differential operator in equations (6a) and (6b) are defined
as equilibrium variables. The variable [B] in equation (6c) is
defined as the kinetic variable. The three variables, ([H] +
[HNTA] + 2[B]), ([NTA] + [HNTA] + [CoNTA] + [B]), and
([Co] + [CoNTA]), in equations (6d) through (6f) are
defined as component variables. It should be noted that R3

appears in both equations (6a) and (6b) because R3 is
linearly dependent on R1 and R2.
[31] This first decomposition yields the above set of

equations which, one may argue, can be easily set up
manually from a geochemist’s point of view. However, it
may be easy to miss species B in defining the total H and
total NTA even for this simple system. For complex systems,
it may not be obvious to generate such a system manually,
and a systematic approach using the matrix decomposition
will accomplish this task.
[32] Now let us discuss how the diagonalization proce-

dure (i.e., decomposition of reaction matrix) overcomes the
difficulties stated in section 2. First, it is noted that either
none or one and only one fast reaction appears in any of the
above six ODEs. Since the rate of a fast reaction is infinitely
large, R3 is small compared to R1 =1 in equation (6a), the

ODE is reduced to
d HNTA½ � þ B½ �ð Þ

dt
� R1 ¼ 1. The infinity

rate is interpreted as a reaction that can reach equilibrium

instantly. Thus
d HNTA½ � þ B½ �ð Þ

dt
� R1 ¼ 1 states the use

of thermodynamics (not chemical kinetics) to model R1,
which results in the last equation in equation (6a), and the
equilibrium variable, ([HNTA] + [B]), reaches its equilibrium
value instantaneously at any time. It is clear that the equili-
brium variable ([HNTA] + [B]) for this system of mixed fast
and slow reactions is analogous to the variable [C] in the
simple system described in the second paragraph in section
2.2. Similarly, R2 =1 results in the last equation in equation
(6b). With the decomposition of reaction networks and the
modeling of fast reactions with thermodynamically consis-
tent expressions, no more ODEs involve infinite rates, and
the simulation time step size is dictated only by slow kinetic
rates, which makes the system much less stiff than in the
primitive approach. These reductions cannot be applied to the
primitive approach using equations (4a) through (4f ) since
either more than one infinite rate appears in one equation
(e.g., R1 and R2 in equation (4b)) or one infinite rate appears
in more than one equation (e.g., R1 in equations (4a), (4b),
and (4c) or R2 in equations (4b), (4d), and (4e)).
[33] Second, there is no reaction rate appearing in equa-

tions (6d), (6e), and (6f ). This signifies that there are three
components, which naturally results from the fact that the
rank of the reaction matrix is three. (The rank of a reaction
matrix is equal to the number of linearly independent
reactions, NI. The number of components, NC, is equal to
the number of species, M, minus the number of linearly
independent reactions (i.e, NC = M � NI = 6 � 3 = 3)).
Again, the components are determined systematically, and
the question of how many species are used to define a
component is automated. The solution of the diagonalized
set of equations (6a) through (6f ) explicitly enforces the
mass conservation of the components Co, H, and NTA.
Third, because none or one and only one infinite rate
appears in each equation, the issue of subtraction or addition
of infinite rates is moot.

ð6eÞ
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[34] Fourth, R3 appears in both equations (6a) and (6b).
This indicates that this reaction is linearly dependent on R1
and R2. If this reaction were also assumed to be a fast
reaction, it must be removed from consideration because
two infinite rates are not allowed to appear in any ODE in a
diagonalized system. If R3 is not removed, than three
infinite rates state three mass action equilibrium equations,
but the mass action equilibrium equation for R3 is a
combination of those for R1 and R2. If all three mass action
equilibrium equations were used, the system would become
singular or over-constrained, which would necessitate the
removal of the dependent fast reaction R3. This automatic
removal of fast reactions that are linearly dependent on
other fast reactions circumvents the problem of singularity
in the system. Fifth, if R3 is a slow reaction as assumed in
this case, since R3 is linearly dependent on only two fast
reactions R1 and R2, its rate appears only in the equations
where rates R1 and R2 appear after decomposition. Because
R3 is small compared to R1 and R2, it disappears from
equations (6a) and (6b). Also, it never appeared in any of
the other four equations after decomposition. Thus R3 does
not appear in any of the final six governing equations and
hence is irrelevant to the system, and is automatically
removed from the system by the BIOGEOCHEM prepro-
cessor. Five difficulties presented in section 2 have now
been resolved; thus the advantages of the diagonalization-
decomposition approach over the primitive approach should
become clear.
[35] Finally, the mass action equilibrium equations, the

last equations in equations (6a) and (6b), can be decoupled
from equations (6c) through (6f ) by eliminating [HNTA]
and [CoNTA] (the procedure of elimination is given in
section 3.2.2 and a simple example is given in section A3 in
Appendix A). In other words, after the substitution of the
last equations of equations (6a) and (6b) into equations (6c)
through (6f ), [H], [Co], [NTA], and [B] can be obtained by
solving three linear algebraic equations (equations (6d)
through (6f )) and one ODE (equation (6c)). Then [HNTA]
and [CoNTA] can be simply calculated using the last
equations of equations (6a) and (6b), respectively. In gen-
eral, equilibrium reactions are decoupled from kinetic reac-
tions. This offers great advantages over DAE approaches
when the system involves a large number of fast/equilibrium
reactions.
3.1.2. Decomposition II
[36] A second decomposition, when HNTA, CoNTA, and

B are chosen as the components, yields the following six
equations (Appendix A).

d NTA½ � � Co½ �ð Þ
dt

¼ �R1 � R3 :
d NTA½ � � Co½ �ð Þ

dt
� �R1 ¼ �1

9 HNTA½ � ¼ Ke
1 H½ � NTA½ �

d Co½ �
dt
¼ R2 þ R3 :

d Co½ �
dt
� R2 ¼ 1

9 Co½ � NTA½ � ¼ Ke
2 CoNTA½ �

ð7bÞ

d H½ � � NTA½ � þ Co½ �ð Þ
dt

¼ �R4 ð7cÞ

d � H½ � þ 2 NTA½ � þ HNTA½ � � 2 Co½ �ð Þ
dt

¼ 0

) TotHNTA ¼ HNTA½ � þ 2 NTA½ � þ HNTA½ � � 2 Co½ � ¼ const

d Co½ � þ CoNTA½ �ð Þ
dt

¼ 0) TotCoNTA ¼ CoNTA½ � þ Co½ � ¼ const

ð7eÞ

d B½ � þ H½ � � NTA½ � þ Co½ �ð Þ
dt

¼ 0

) TotB ¼ B½ � þ Co½ � þ H½ � � NTA½ � ¼ const
ð7fÞ

[37] While the mass conservation of Co, NTA, and H may
be intuitive to geochemists, the mass conservation of HNTA,
CoNTA, and B may be a surprise. These alternative mass
conservation equations are nonetheless mathematically as
correct as the mass conservation of Co, NTA, and H. This is
beside the point. The question then becomes why bother with
the second decomposition? In the first intuitive decomposi-
tion, the reaction rate R4 is measured by the evolution of the
[B] versus time curve (equation (6c)). If the concentration of
microbial biomass, [B], is difficult to measure, the second
decomposition may offer a way to determine the reaction rate
R4 bymeasuring the ([H]� [NTA] + [Co])-versus-time curve
if the concentration of H (or pH), NTA, and Co can be
measured easier. Under such circumstances, the second
decomposition offers an attractive way of formulating reac-
tion rate R4. In any event, the nonuniqueness of the matrix
decomposition may allow employment of appropriate gov-
erning equations for easier formulations of rate equations
[Burgos et al., 2002, 2003] and/or for robust numerical
computation. The variable that can be used to measure a
kinetic reaction is defined as a kinetic variable. A kinetic
variable may consist of just one species (e.g., equation (6c))
or a combination of species (e.g., equation (7c)) depending
on the reaction matrix decomposition.
[38] Recall that in Decomposition I, the mass action

equilibrium equations, equations (6a) and (6b), were
decoupled from equations (6c) through (6f) by eliminating
[HNTA] and [CoNTA]. In this alternative decomposition,
since HNTA and CoNTA are chosen as the component
species, they are not eligible species for elimination.
Instead, the decoupling of equations (7a) and (7b) from
equations (7c) through (7f ) is achieved by eliminating two
species (e.g., [NTA] and [Co], or [Co] and [H]) out of the
three product species ([H], [NTA], and [Co]). While the
elimination of [HNTA] and [CoNTA] in Decomposition I is
straightforward, the elimination of [NTA] and [Co], for
example, is not as straightforward. The detailed procedure
of decoupling mass action equilibrium equations from
kinetic-variable and component equations by eliminating a
subset of product species is given in section 3.2.2.
3.1.3. Other Advantages of Decomposition
[39] An even more significant advantage is that the decom-

position decouples all kinetic rates such that rate formula-
tions/parameters can be determined one reaction at a time,
independent of all other kinetic reactions (when parallel
kinetic reactions are not present). For example, in equations
(6c) or (7c), there is only one kinetic rate on its right hand side.
Thus the slope of [B]-versus-time or ([H] � [NTA] + [Co])-

ð7aÞ

ð7dÞ
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versus-time defines the reaction rate R4. For the former case,
the kinetic variable is a single species B while for the latter
case, the kinetic variable consists of three species. Concep-
tually, equation (4f) and (6c) are quite different. In equation
(4f), [B] denotes the concentration of the species B due to all
reactions (in this case just R3) while in equation (6c), [B]
denotes the concentration of a kinetic variable (in this case just
B) that is measured by a linearly independent kinetic reaction
and possibly other linearly dependent kinetic reactions (none
in this case). In general, a kinetic variable may consist ofmore
than one species depending on the complexity of the system.
The rate of a linearly independent kinetic reaction ismeasured
by a kinetic variable not by a single species. The rate of a
kinetic reaction ismeasured by a single species onlywhen it is
the only contributing reaction to the production/consumption
of the species. The distinction between kinetic variables and
time-variant species concentrations must always be borne in
mind when one models geochemical and biochemical pro-
cesses with this general paradigm.

3.2. BIOGEOCHEM Preprocessor

3.2.1. Determines the Number of Linearly Independent
Reactions
[40] Let us start with a reaction network that consists of Ne

equilibrium and Nk kinetic reactions. For a complex system,
it will not be obvious to know if all Ne reactions are linearly
independent. Nor is it obvious to know if any of the Nk kinetic
reaction are linearly dependent on only fast reactions. Thus
from the above discussion, the first step in the decomposition
is to determine the rank, i.e., the number of linearly inde-
pendent reactions, of the matrix whose columns are made of
the stoichiometric coefficients of Ne equilibrium reactions.
The rank of a matrix can be determined with column
reduction using any standard matrix operation package
[Press et al., 1992]. The reduction is carried out column
by column. If no pivot element can be found for a column,
the equilibrium reaction corresponding to this column is
considered a dependent reaction and is redundant. Suppose
the rank of the matrix is NE, which should be less than or
equal to Ne, we choose the first NE columns in which a
pivot element can be found as the NE linearly independent
reactions. The remaining (Ne - NE) equilibrium reactions are
discarded from further consideration in the reaction net-
work. It does not matter which NE equations are chosen
when all fast reactions are modeled with thermodynamically
consistent equilibrium expressions. Second, we determine
which of the Nk kinetic reactions is linearly dependent on
only the chosen NE equilibrium reactions. To do this, we
check the rank of the NE + 1 matrix (defined as the matrix
whose columns are made of the stoichiometric coefficients
of NE equilibrium reactions and one kinetic reaction). When
the rank of this matrix is equal to NE, i.e., no pivot element
can be found in the (NE + 1)th column, the kinetic reaction
in the matrix is linearly dependent on only NE equilibrium
reactions, and this kinetic reaction is removed from the
reaction network. Continuing this process one by one for all
Nk kinetic reactions, we are left with NK kinetic reactions,
which is less than or equal to Nk.
[41] Starting with Ne fast reactions and Nk slow reactions,

we end up with NE linearly independent equilibrium reac-
tions and NK kinetic reactions. Among those NK kinetic
reactions, some are linearly independent reactions while

some may be linearly dependent on at least one other kinetic
reaction. Under such circumstances, only linearly independ-
ent kinetic reactions can be segregated. In other words, a
subset of the NK kinetic reactions (referred to as NKI)
consists of linearly independent kinetic reactions while the
remaining reactions (referred to as NKD where, NK � NKI =
NKD) are linearly dependent kinetic reactions. Of course, the
selection of NKI linearly independent kinetic reactions is not
unique. Let us denote NI as the number of linearly inde-
pendent reactions, i.e., NI = NE + NKI. The remaining task
for the BIOGEOCHEM preprocessor is to formally decom-
pose the reaction matrix which is made of NE linearly
independent equilibrium reactions and NK kinetic reactions.
[42] All reactions are initially indexed with 0 in the

BIOGEOCHEM preprocessor. During the reduction proc-
ess, the index of every linearly dependent reactions is
overwritten with a nonzero value. A redundant reaction is
indexed with 1, an irrelevant reaction with 2, and all other
relevant linearly dependent reactions with 3. The indexing
array is used to determine which linearly independent
reactions the dependent reactions depend on, and is also
used to indicate if the dependent is redundant, irrelevant, or
relevant. For example, in equation (A4c), R3 depends on R1
(keep in mind, R1 has been already chosen an independent
reaction) because R3 and R1 show up in the same equation.
Similarly, R3 depends on R2 because both R3 and R2 show
up in equation (A4e). Thus R3 depend on both R1 and R2.
Because R3 is a slow reaction and it depends on only fast
reactions, it is irrelevant and the preprocessor will give us
the index of 2 for this reaction.
[43] The decomposition of the reaction matrix is not

unique [Westall et al., 1976; Yeh et al., 2000, 2001a]. In
order to obtain a decomposition that contains intuitively
obvious or recognizable quantities, we observe in the
Gauss-Jordan column decomposition that (1) when a row is
chosen as a pivot element, its corresponding species is a
product species, (2) the species corresponding to the row
that has never been chosen as a pivot element is a compo-
nent species so that one can exert control of components
based on one’s understanding of the problem, and (3) a li-
nearly dependent reaction will appear only in the rows that
contain the linearly independent reaction (each row has one)
that this reaction depends on after completion of the
decomposition. Based on observations (1) and (2), we
choose the row that contains the least number of nonzero
entries as the pivot element in any column reduction. Based
on observation (3) and because all NE equilibrium reactions
are linearly independent, an equilibrium reaction appears in
only one row and any row will not have more than one
equilibrium reaction, if the reduction is performed firstly for
NE columns corresponding to the NE reactions. In this NE

set, each reduced ODE (not the original ODE) that has one
and only one equilibrium reaction is simplified by discarding
slow kinetic rates in the equation. The simplified ODE is
then replaced by the corresponding mass action equilibrium
equation or a user-specified algebraic equation. The number
of ODEs replaced is thus equal to NE. The remaining ODEs
will not have any fast reaction rates in them.
3.2.2. Selects Master and Secondary Species
[44] Before decomposition, users can judiciously select a

set of components. After decomposition, the BIOGEO-
CHEM preprocessor will automatically rectify illegitimate
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components that a user may have wrongfully selected, and
return a complete set of components (NC = M � NI). This
automatic procedure is performed by removing an incor-
rectly selected component during a column reduction step.
If a pivot element can be found from rows other than those
corresponding to user-selected components, then all
selected components are still legitimate up to this point.
Otherwise, a row corresponding to the selected-component
must be chosen as the pivot element and this selected-
component must be de-listed from the set of components.
All species that have been chosen as the pivot elements
form the set of product species (the number of product
species is equal to NI). The remaining species make up the
set of component species. After completion of the decom-
position, the BIOGEOCHEM preprocessor will keep those
user-selected components that are legitimate and remove
those that are illegitimate. The component species are
classified as master species (term used in PHREEQE) or
basis species (term used in MINEQL). A product species
can be classified as a master or a secondary species. In order
to minimize the number of simultaneous equations in
biogeochemical modeling, all fast reactions that are mod-
eled with mass action equilibrium equations should be
decoupled from the kinetic reactions. In other words, each
fast reaction modeled with the mass action equilibrium
equation can be used to eliminate one product species from
simultaneous consideration. An eliminated product species
is termed a secondary species. Since there are NE linearly
independent equilibrium reactions, there may be up to NE

secondary species (Note: the number of secondary species
will be equal to NE if and only if all NE reactions are
modeled with the mass action equilibrium equations. If
some fast reaction are modeled with user-specified algebraic
equations or some fast reactions are ion-exchange reactions
or precipitation-dissolution reactions, then the number of
secondary species is less than NE because these algebraic
equations and the mass action equilibrium equations for ion-
exchange and precipitation-dissolution reactions are not
eliminated.) The choice of the set of secondary species
among NI product species is not unique when at least one of
the fast reactions involve more than one product species.
[45] To obtain a suitable set of secondary species, we

perform Gauss-Jordan row decomposition of the matrix
whose rows are made up of reaction stoichiometries of
those fast reactions that are modeled with mass action
equilibrium equations. The fast reactions that are modeled
with user-specified algebraic equations should not be
included in the matrix decomposition for the selection of
secondary species, because the inclusion of these reactions
will not allow the linear combination of the log Ke values of
fast reactions. Users must specify one species as a master
species for this reaction.
[46] The BIOGEOCHEM preprocessor performs the final

step of finding and eliminating the secondary species after the
components and kinetic variables are defined and after the
redundant equilibrium reactions and irrelevant kinetic reac-
tions are removed. The procedure is achieved by diagonaliz-
ing the matrix whose rows are made of the reaction
stoichiometries of fast reactions (excluding those fast reac-
tions that are modeled with user-specified algebraic equa-
tions). The species that will be used to eliminate amass action
equilibrium equation is chosen as a pivot element. Any

species in a fast reaction can be chosen as a pivot element
except the component species, the species that have been
reserved in user-specified algebraic equations, and the species
that have already been found as pivot elements. The proce-
dure of choosing a pivot element is automated in the BIO-
GEOCHEM preprocessor. In the automation, either the first
eligible column or the eligible column that contains the least
number of nonzero entries is chosen as the pivot element in
any row reduction. If a product species that is chosen as a
pivot element is not a precipitated species or an ion-
exchanged species, it will be eliminated from simultaneous
consideration and thus is a secondary species; otherwise, the
species will not be eliminated and remains as a master species
and the corresponding mass action equilibrium equation
(used to model precipitation-dissolution or ion-exchanged
reaction) is not eliminated. Those product species that have
not been chosen as pivot elements are master species. The
element in the diagonalized matrix that corresponds to the
pivoting species is normalized so that its activity can be
expressed explicitly as the function of the activities of
component species and other nonpivoting species. Mean-
while, the log equilibrium constant of each pivoting species
(secondary species) can be determined as the linear combi-
nation of the log equilibrium constants of all the original
independent equilibrium reactions. The detail of these proce-
dures is given in Appendix A using a simple example.
[47] Careful decisions must be made as to which equili-

brium reactions are to be treated as dependent reactions
(keep in mind that when some reactions are dependent on
each other, the selection of independent reactions versus
dependent reactions is not unique) and hence as redundant
reactions. When all fast reactions are modeled with mass
action equilibrium equations, it does not matter which fast
reaction is removed. However, when at least one fast
reaction is formulated with a user-specified algebraic equa-
tion, one must consider the importance of each fast reaction
and remove the least important one. If one wants to exclude
certain reactions from the list of candidate eliminations, one
simply arranges these among the first NE reactions. This is
the point that a user must be aware of and guard against.
3.2.3. Generates Three Subsets of Governing
Equations
[48] With the above discussion, equation (3) is decom-

posed into the following equation via the Gauss-Jordan
elimination [Chilakapati, 1995; Steefel and MacQuarrie,
1996; Yeh et al., 2001a]

B
dC

dt
¼ D K

01 02

� �
R ð8Þ

where B is the reduced unit matrix, D is the diagonal matrix
representing a submatrix of the reduced reaction-matrix
with size of NI � NI reflecting the effects of NI linearly
independent reactions on the production-consumption rate
of all kinetic-variables, K is a submatrix of the reduced
reaction-matrix with size of NI � NKD reflecting the effects
of NKD dependent kinetic reactions, 01 is a zero matrix
representing a submatrix of the reduced reaction-matrix
with size NC � NI, and 02 is a zero matrix representing a
submatrix of the reduced reaction-matrix with size NC �
NKD. An example illustrating this form of the equation is
given for Decomposition I in Appendix A.
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[49] The decomposition of equation (3) to equation (8)
effectively reduces a set of M simultaneous ODEs into three
subsets of equations: the first contains NE infinite-rate
equations, each represents an equilibrium reaction that can
be formulated with either a mass action equilibrium equa-
tion or a user-specified algebraic equation (see section 4);
the second contains (NI–NE) simultaneous ODEs represent-
ing the rate of change of the kinetic variables; and, the third
contains NC linear algebraic equations representing mass
conservation of the chemical components. These equation
subsets are defined as

Infinite-rate equations for NE equilibrium reactions

dEi

dt
¼ DkkRk þ

X
j2NKD kð Þ

DijRj; k 2 NE; i 2 M :
d

dt

Ei

Dkk

� �
� Rk¼1

9 a thermodynamically consistent equation ð9Þ

Governing equations for (NI–NE) kinetic variables

dEi

dt
¼ DkkRk þ

X
j2NKD kð Þ

DijRj; k 2 NKI; i 2 M ð10Þ

Mass conservation equations for NC chemical components

dEi

dt
¼ 0; denoting Tj ¼ Ei; j 2 NC; i 2 M ð11Þ

where Ei is the linear combination of species concentration
resulting from the matrix decomposition and NKD(k) is the
subset of linearly dependent kinetic reactions, which
depends on the kth linearly independent reaction. For this
generic system, the variable, Ei, in equation (9) is called an
equilibrium variable, the variable Ei in equation (10) is
called a kinetic variable, and the variable Ei in equation (11)
is called a component variable and is normally denoted with
Tj. It should be emphasized here that only linearly
independent reactions can be segregated, not all reactions.
[50] The unique feature of the diagonalization is that there

is only one linearly independent kinetic reaction appearing
on the right-hand side of equation (10) when parallel kinetic
reactions are not present. The significance of this unique
feature is that all linearly independent kinetic reactions are
segregated, thus it enables the formulation and parameter-
ization of linearly independent reaction rates one reaction at
a time, independent of all other kinetic reactions; if linearly
dependent kinetic reactions are not present in the system.
When an experiment is conducted to study kinetics, it must
be controlled such that NKD(k) = 0. Otherwise, kinetic
reactions cannot be completely segregated [Yeh et al.,
2000a] and the independent formulation of kinetic reaction
rates cannot be achieved [Burgos et al., 2002, 2003].
Without a careful design of experiments to exclude linearly
dependent kinetic reactions, only lumped kinetic rates can
be formulated and characterized [Burgos et al., 2002, 2003].

4. Reaction Rate Formulations

[51] A rate equation must be specified in order to quanti-
tatively describe a general biogeochemical reaction. A
general reaction can be written as

XM
i¼1

mikGi ,
XM
i¼1

nikGi; k 2 N ð12Þ

where Gi is the chemical formula of the ith species involved
in k reactions. For an elementary kinetic reaction the rate
law is given by collision theory [Smith, 1981; Atkins, 1986]
as

Rk ¼ kfk

YM
i¼1

Cið Þmik�kbk
YM
i¼1

Cið Þnik
 !

; k 2 NK ð13Þ

in which

kfk ¼ Kf
k

YM
i¼1

gið Þ
mik and kbk ¼ Kb

k

YM
i¼1

gið Þ
nik ð14Þ

where Rk is the reaction rate, kk
f is the concentration-based

forward rate constant, and kk
b is the concentration-based

backward rate constant of the kth kinetic reaction, Ci is the
concentration of the ith species, Kk

f is the activity-based
forward rate constant, gi is the activity coefficient of the ith
species, and Kk

b is the activity-based backward rate constant.
When a kinetic reaction cannot be modeled with an
elementary rate, it may be formulated based on either
empirical or mechanistic approaches [Steefel and van
Cappellen, 1998; Yeh et al., 2001a]. To make BIOGEO-
CHEM completely general, for any nonelementary kinetic
reaction, its rate may be user-specified as follows:

Rk ¼ Rk C1;C2; . . . ;CM; k1; k2; . . .ð Þ ð15Þ

where Rk is the prescribed rate law by the user written as a
function of the concentrations of species participating in the
reaction and a number of parameters; Ci is the concentration
of the ith species and k1, k2,. . . are rate parameters used to fit
experimental data. Equation (15) looks like equation (2) at
first glance, but they render different meanings. In an ad hoc
approach, equation (2) represents the empirical rate of change
of a species due to all reactions. In a reaction-based approach,
equation (15) represents the empirical rate (if one cannot
come up with a pathway) or mechanistically derived rate (if
one can come up with a pathway, for example enzymatic
kinetics) of a single reaction. Hence, for a reaction-based
model, even when an empirical rate formulation is used, the
formulation is theoretically descriptive of the specific
chemical reaction and therefore may be applicable to a wider
range of environmental conditions. Only when the rate of a
species is due to only one reaction are equations (2) and (15)
conceptually the same.
[52] If the reaction is a fast reaction, it is assumed that the

reaction instantaneously reaches equilibrium and its rate is
mathematically abstracted as infinity stating a thermody-
namically consistent expression, for example, the mass
action equilibrium equation as

dEi

dt
¼ DkkRk þ

X
j2NKD kð Þ

DijRj; k 2 NE; i 2 M :
dEi

dt
� DkkRk ¼ 1

9 Ke
k ¼

QM
i¼1

Aið Þnik
� �
QM
i¼1

Aið Þmik
� � ð16Þ

where Kk
e is the equilibrium constant of the kth reaction and

Ai is the activity of the ith species. For precipitation/
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dissolution reactions, the activity of solid species is assumed
to be constant and equal to unity. The mass action
equilibrium equation can be simply treated as a thermo-
dynamic hypothesis [Goldberg, 1991]. It does not have to
be conceived as the kinetic rate expression that follows
mass action kinetics as described with the following
equation

Rk ¼ � lim
Kb
k
)1

Kb
k �

YM
i¼1

Aið Þnikk�Ke
k

YM
i¼1

Aið Þmik
 !

;Ke
k ¼

Kf
k

Kb
k

¼ fixed constant ð17Þ

[53] Conceptually, the use of equations (16) and (17) to
describe an equilibrium reaction are quite different. Equa-
tion (16) states that the rate of a fast reaction is infinity as a
mathematical abstraction (Recall this is justified in the
paragraph under section 2) and its reactants and products
satisfy the mass action equilibrium equation instantane-
ously. The last equation in equation (16) is not a rate
formulation because the concept of finite rate does not exist
in thermodynamics. On the other hand, equation (17) states
that the rate of a fast reaction is formulated as an asymptote
of the mass action kinetics (a kinetic reaction modeled with
an elementary rate expression with both forward and back-
ward rate constants infinitely large while keeping their ratio
at a fixed value, i.e., the equilibrium constant). (Keep in
mind equation (16) is called mass action equilibrium equa-
tion while equation (17) is called mass action kinetic
equation.) The rate of the fast kinetic reaction is indetermi-
nate since its reactants and products satisfy the mass action
equilibrium equation, equation (16), at equilibrium. Even at
the slightest deviation from the equilibrium, the rate as
defined by equation (17) is infinity. This is precisely the
reason that the fast reaction rate should not be formulated as
the asymptotic approximation of a mass action kinetics
because it would make the set of ODEs (equations (4a) to
(4f) for the example given in section 2) infinitely stiff.
Rather, it is better to consider the rate of a fast reaction
infinity as a mathematical abstraction (i.e., equation (16)).
The mathematical abstraction serves a dual function. First, it
facilitates the comparison of the magnitude of various
reaction rates appearing in the reduced set of ODEs.
Second, it states that the thermodynamic approach is taken
to model the equilibrium reactions using either a mass
action equilibrium equations or a user-specified algebraic
equations.
[54] To make BIOGEOCHEM completely general, a

user-specified algebraic equation can be used to describe a
fast reaction when it cannot be modeled with a mass action
equilibrium equation

dEi

dt
¼ DkkRk þ

X
j2NKD kð Þ

DijRj; k 2 NE; i 2 M :

ð18Þ
dEi

dt
� DkkRk ¼ 1 9 Fk� C1;C2; . . . ;CM; p1; p2; . . .ð Þ ¼ 0

where Fk is an implicit function of species concentrations
with a number of parameters. For example, the linear (Kd

approach) and nonlinear (Freundlich) isotherms describing

heterogeneous reactions with partitioning between aqueous
and adsorbed chemicals fall into this category.

5. Numerical Solution

[55] After the reaction matrix is decomposed in BIO-
GEOCHEM, equations of the type of equation (16) are
manipulated so that only one secondary species can appear
in any of mass action equilibrium equation to facilitate
computation (i.e., equations of the type of equation (16) can
be easily eliminated). On the other hand, user-appointed
species in equations of the type of equation (18) cannot be
easily eliminated in general. Thus for computational effi-
ciency in the Newton-Raphson technique [Westall et al.,
1976; Yeh et al., 1995], the numbers of equations are kept to
a minimum in BIOGEOCHEM, involving one set of linear
algebraic equations (mass conservation equations), one set
of nonlinear ordinary differential equations (for kinetic
variables), one set of user-specified algebraic equations (for
the fast reactions that cannot be modeled with mass action
equilibrium equations), one set of nonlinear algebraic
equations for equilibrium ion exchanged reactions, and
one set of nonlinear algebraic equations for equilibrium
precipitation reactions. Full pivoting is used to solve the
matrix equation resulting from the Newton-Raphson itera-
tion [Yeh et al., 1998].
[56] The governing set of linear algebraic equations,

nonlinear algebraic equations, and nonlinear ODEs are
solved with a significantly modified version of the code
BIOKEMOD [Salvage and Yeh, 1998]. An iteration loop of
basis switching is incorporated within a Newton-Raphson
iteration loop to improve the robustness and efficiency of
computation. The idea of basis switching can be found in
the works by Westall et al. [1976] and Steefel and
MacQuarrie [1996].
[57] Since the concentration of some species may be

several orders of magnitude smaller than others in a
component equation, mass nonbalance or nonconvergence
may occur for the component. In other words, the computed
species concentrations that compose the mole balance
equation cannot add up to the given total component
concentration to within the error tolerance. This normally
occurs when the concentration of a component species is
very low and the concentration of a secondary species that is
a member of the component is very high. The component
species is explicitly included in solving the mass balance
equation. Because of its low concentration, it may still
satisfy the mass balance to within the error tolerance even
though its percentage error may not be very small. On the
other hand, the concentration of the secondary species is
calculated using the simulated component species (and
possibly other master species) concentrations. When the
reduced log K value of the secondary species is large and
the percentage error in the concentration of the component
species is not that small, the calculated concentration of the
secondary species may have a significant absolute error that
is much larger than the concentrations of the component
species and other master species consisting of the compo-
nent. This error naturally causes a significant mass balance
error. To resolve this problem, basis switching is used to
swap the low-concentration component species with the
high-concentration secondary species (i.e., the component
species become a new secondary species and the secondary
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species becomes a new component species).With this species
switching, the concentrations of the new component species
can be expected to be much higher than that of the new
secondary species. As a result, the contribution to the mass
balance is mainly due to the new component species. Since
the new component species concentration is simulated to
explicitly satisfy the mass balance equation, it will not cause
much mass balance error. The mass balance error is due
mainly to the new secondary species. However, because the
concentration of the new secondary species is much smaller
than that of the new component species, even a large
percentage error in its concentration will not cause much
mass balance error. Therefore the mass balance is likely
satisfied with the new component and secondary species.
[58] The mathematical algorithm of basis switching is

summarized as follows. From mass action equilibrium
equations, we have

xi ¼ ai

Y
j

c
aij
j ð19Þ

where cj is the concentration of the jth component or
species, xi is the concentration of the ith secondary species,
aij is the stoichiometric coefficient of the jth species in the
ith mass action equilibrium equation and ai given by

ai ¼ Ke
i

Q
j

g
aij
j

gi
ð20Þ

is the modified stability constant.
[59] Suppose cm is the component to be switched with xk,

then from equation (19), for i = k

xk ¼ ak

Y
j 6¼m

c
akj
j cakmm ð21Þ

from which we can obtain

cm ¼ x
1

akm

k ak

Y
j 6¼m

c
akj
j

" #� 1
akm

ð22Þ

Substituting equation (22) into equation (19) for i 6¼ k, we
have

xi ¼ aia
�aim

akm

i

Y
j 6¼m

c
aij�

akjaim
akm

j x
aim
akm

k ð23Þ

Equations (22) and (23) can be described in a general form
as

x0i ¼ a0i
Y
j

c
0a0
ij

j ð24Þ

in which for i = k:

x0i ¼ cm;a0i ¼ a0k ¼ a
� 1

akm

k ¼ 1

a
a0
km

k

;

a0ij ¼ a0kj ¼
�akj
akm
¼ �akja0km and c0j ¼ cj if j 6¼ m;

a0ij ¼ a0km ¼
1

akm
and c0j ¼ xk if j ¼ m

ð25Þ

for i 6¼ k:

x0i ¼ xi;a0i ¼ aia
�aim
akm

k ¼ ai a0k
� �aim ;

a0ij ¼ aij �
akjaim

akm
¼ aij þ aima

0
kj and c0j ¼ cj if j 6¼ m;

a0ij ¼ a0im ¼
aim

akm
¼ aima

0
km and c0j ¼ xk if j ¼ m

ð26Þ

[60] After basis switching, the same calculation is carried
out with the new components and secondary species.
Although the choice of component species is not unique,
any choice is equivalent; thus results for the system will not
be changed after basis switching. By switching one species
at each time, BIOGEOCHEM can switch as many times as
needed. In order to keep the system consistent, BIOGEO-
CHEM performs forward and backward basis switching.
After backward basis switching, the components are the
same as the original ones. Because the components must be
consistent in hydrologic transport (i.e., once the set of
components is chosen, the same set must be used through-
out transport simulations), the backward basis switching is
necessary when the reaction chemical module is coupled
with a hydrologic transport model.

6. Example Simulations

[61] A total of three example problems are employed to
demonstrate the application of BIOGEOCHEM. The first
example is used to partially verify the model using a
comprehensive reactive-chemical and biodegradation prob-
lem that was modeled by others [Chilakapati et al., 1998].
In addition, this problem involves nonlinear Monod kinetics
as well as nonlinear elementary kinetics. A successful
simulation of this problem would demonstrate the capability
of the model to address various types of nonlinear cases.
The second example is used to demonstrate the capability of
BIOGEOCHEM to simulate generic reactive chemical
problems involving mixed fast/equilibrium and slow/kinetic
reactions of simultaneous geochemical processes including
aqueous complexation, adsorption-desorption, ion ex-
change, and precipitation-dissolution. The third problem is
used to exemplify the need for basis species switching to
deal with problems that are difficult to converge.

6.1. Mixed Microbiological and Chemical Kinetics

[62] This case has been studied by Chilakapati et al.
[1998]. The main purpose of the case was to study
biogeochemical reactions that affect the transformation of
Co(II) ethylenediaminetetraacetic acid (EDTA) complexes.
The reaction network is listed in Table 1. It was simplified
by Chilakapati et al. [1998] from the full reaction network
of over 64 reactions studied by Szecsody et al. [1994].
Reactions R1–R5 are fast adsorption/desorption reactions.
R6 and R7 represent iron dissolution as a two-step ligand
promoted process. R8 is an oxidation reaction. R9 and R10
are biodegradation reactions, where Fe(III) EDTA and
EDTA are the electron donors and O2 is the terminal
electron acceptor. Some of the reactants and products are
not included in reactions R7 and R8 because these species
are not the contributing factors in the simulation.
[63] Included in this simulation are a total of 15 species

(M = 15), 5 equilibrium reactions (Ne = 5) and 5 kinetic
reactions (Nk = 5). According to Chilakapati et al. [1998],
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species initially present in the system are Co(II)EDTA (0.032
mM), dissolved O2 (0.256 mM), microorganisms (0.02 mM),
the charged surface site Spos (0.016 mM) and Sneg (0.0011
mM). If we suppose all the reactions are linearly independent,
then there must be 5 components. However, the BIOGEO-
CHEM preprocessor determined there are 6 components. In
other words, there are only 9 linearly independent reactions,
i.e., the rank of the reactionmatrix turned out to be 9. Because
all five equilibrium reactions are linearly independent, none

of these fast reactions is redundant. The decomposition
indicated that none of the five slow reactions depends on only
fast reactions, thus all kinetic reactions are relevant to the
system. The decomposition also revealed that one of the three
kinetic reactions (R7, R9, and R10) can be considered
linearly dependent on the other two and possibly other fast
reactions. Without loss of generality, we consider R10 a
linearly dependent reaction. The decomposition revealed that
R10 depends on R4 (a fast reaction), R7 and R9. R10 is

Figure 1. Solution of the reaction network in Table 1: Comparison of this study with results of
Chilakapati et al. [1998]. C0 and C1 are the initial concentrations of Co(II)EDTA(aq) and microorganisms,
respectively.

Table 1. Reaction Network for the Example Problem in Section 6.1a

Reaction Reaction Number Reaction Constants

Co(II)(aq) + Sneg
(+ Sneg-Co (R1) K1

e = 12.0
Co(II)EDTA(aq) + Spos

(+ Spos-Co(II)EDTA (R2) K2
e = 25.0

Fe(III)EDTA(aq) + Spos
(+ Spos-Fe(III)EDTA (R3) K3

e = 9.0
EDTA(aq) + Spos

(+ Spos-EDTA (R4) K4
e = 25.0

Co(III)EDTA(aq) + Spos
(+ Spos-Co(III)EDTA (R5) K5

e = 2.5
Spos-Co(II)EDTA $ Co(II)(aq) + Spos-EDTA (R6) k6

f = 1.0 h�1, k6
b = 1.0 � 10�3 L mM�1h�1

Spos-EDTA $ Fe(III)EDTA(aq) + Spos (R7) k7
f = 2.5 h�1, k7

b = 0.0 L mM�1h�1

Co(II)EDTA(aq) $ Co(III)EDTA(aq) (R8) k8
f = 1.0 � 10�3 h�1, k8

b = 0.0 h�1

Fe(III)EDTA(aq) + 6O2 ! 3CO2 + Biomass (R9) user specified reaction rate as expressed by R9 in equation (B9)
in section B1.3, where m1 = 2.5 � 10�4 h�1, k11 = 1.0 � 10�5 mM L�1,
and k21 = 1.0 � 10�5 mM L�1

EDTA(aq) + 6O2 ! 3CO2 + Biomass (R10) user specified reaction rate as expressed by R10 in equation (B9) in
section B1.3, where m2 = 0.025 h�1, k12 = 1.0 � 10�5 mM L�1,
and k22 = 1.0 � 10�5 mM L�1

aAfter Chilakapati et al. [1998].
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relevant because it depends on at least one of the kinetic
reactions (two in this case). Had R10 depended on only fast
reactions, it would be irrelevant. An example of matrix
decomposition of the reaction network is shown in Appendix
B, section B1.
[64] Comparison of the simulation results obtained with

the present study (solid line) and with Chilakapati et al.
[1998] for the steady disappearance of Co(II)EDTA, the
production/consumption of EDTA and Fe(III)EDTA, and
the growth of microorganisms are shown in Figure 1. These
results demonstrate that the simulations calculated using
BIOGEOCHEM were essentially identical to the simulation
calculated by Chilakapati et al. [1998]. Identical model
simulations serve to partially verify the performance and
accuracy of BIOGEOCHEMl. For description and discus-
sion of the experimental data see Chilakapati et al. [1998].

6.2. Complexation, Adsorption, Ion Exchange, and
Dissolution in a System of Mixed Equilibrium and
Kinetic Reactions

[65] This example demonstrates the generic flexibility of
BIOGEOCHEM. It is a fictitious system involving aqueous
complexation, adsorption, ion exchange, and mineral dis-
solution reactions. Each type of reaction includes both fast/

equilibrium and slow/kinetic reactions. Table 2 lists the
conceptualized reaction network. Initially, species C3 (an
organic complex) is in contact with mineral M, which is a
metal-hydroxide. Through dissolution a portion of the
mineral becomes solubilized (Reaction R1 in Table 2); the
dissolution is assumed to be an irreversible reaction.
Adsorbing sites are formed on the surface of the mineral
M (R2). The surface site commonly undergoes ionization
reactions upon contact with water (R25 and R26). Species
C3 dissociates into C4 and C5 (R3 in Table 2). Species C4,
C5, C6 and dissolved species C1 react to form various
complexed species (R4 through R23). In turn, some of
these complexed species are adsorbed onto the surface of
the mineral M (R27 through R31). The system also includes
an ion exchange site and three ions (C6, C29 and C30)
compete for the site (R32 and R33). The chemical system is
quite complex, although some of the reactions are made up
in order to demonstarte the generality of BIOGEOCHEM.
For example, R2 (partition between bulk and surface metal
ions) is used to reflect the mass balance of surface sites.
Some of the reaction constants are obtained from Szecsody
et al. [1994] and Yeh et al. [1995].
[66] The slow reactions were assumed to be the dissolu-

tion of the mineral, and the adsorption of C5-complexes and

Table 2. Reaction Network for the Example Problem in Section 6.2

Reaction Reaction Number Reaction Constants

Mineral Dissolution and Surface Site Formation Reactions
M Ð C1 � 3C2 (R1) k1

f = 0.05
M Ð S1 (R2) User specified partition between bulk and surface

metal ions as expressed by equation (B16) in Appendix B.

Aqueous Complexation Reactions
C3Ð C4 + C5 (R3) Log k3

f = 2.03, Log k3
b = 20.00

C6 + C5 Ð C7 (R4) Log K4
e = 12.32

C2 + C5 + C6 Ð C8 (R5) Log K5
e = 15.93

C6 Ð C2 + C9 (R6) Log K6
e = �12.60

C1 + C5 Ð C10 (R7) Log k7
f = 25.00, Log k7

b = �2.57
C1 + C2 + C5 Ð C11 (R8) Log K8

e = 29.08
C1 + C5 Ð C2 + C12 (R9) Log K9

e = 19.65
C1 + C5 Ð 2C2 + C13 (R10) Log K10

e = �36.30
C1 Ð C2 + C14 (R11) Log K11

e = �2.19
C1 Ð 2C2 + C15 (R12) Log K12

e = �5.67
C1 Ð 3C2 + C16 (R13) Log K13

e = �13.60
C1 Ð 4C2 + C17 (R14) Log K14

e = �21.60
2C1 Ð 2C2 + C18 (R15) Log K15

e = �2.95
C2 + C4 + C5 Ð C19 (R16) Log K16

e = 21.40
C4 Ð C2 + C20 (R17) Log K17

e = �9.67
C4 Ð 2C2 + C21 (R18) Log K18

e = �18.76
C4 Ð 3C2 + C22 (R19) Log K19

e = �32.23
C2 + C5 Ð C23 (R20) Log K20

e = 11.03
2C2 + C5 Ð C24 (R21) Log K21

e = 17.78
3C2 + C5 Ð C25 (R22) Log K22

e = 20.89
4C2 + C5 Ð C26 (R23) Log K23

e = 23.10
C2 + C27 Ð C28 (R24) Log K24

e = 14.00

Adsorption-Desorption Reactions
S1 Ð S2 + C2 (R25) Log K25

e = �11.60
S1 + C2 Ð S3 (R26) Log K26

e = 5.60
S1 + 3C2 + C5 Ð S4 (R27) Log K27

e = 30.48
S1 + C1 + C2 + C5 Ð S5 (R28) Log k28

f = 40.00, Log k28
b = 2.37

S1 + C2 + C4 + C5 Ð S6 (R29) Log k29
f = 30.00, Log k29

b = 1.51
S1 � C2 + C4 Ð S7 (R30) Log k30

f = �0.99, Log k30
b = 1.70

S1 + C2 + C5 + C6 Ð S8 (R31) Log k31
b = 1.19, Log k31

f = 25.0

Ion Exchange Reactions
C29 + 2 site-C30 Ð site-C29 + 2C30 (R32) Log k32

b = �0.5, Log k32
f = �0.75

C6 + 2 site-C30 Ð site-C6 + 2C30 (R33) Log k33
e = 0.6
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C4 (R1 and R28–31, respectively). Sorbed species were
modeled using simple surface complexation approaches
built into BIOGEOCHEM. To further demonstrate the
capability of BIOGEOCHEM to model kinetic aqueous
complexation and ion exchange reactions, R3, R7 and
R32 are treated as kinetic reactions.
[67] From the above conceptualization of the reaction

network, this simulation includes a total of 41 species (M
= 41), excluding the species C28 because its activity is
assumed 1.0, 25 equilibrium reactions (Ne = 25) and 8
kinetic reactions (Nk = 8). Initial concentrations of C6, M,
C3, and C30 are 2 � 10�3 M, 2.36 � 10�5 M, 8.51 � 10�6

M, and 0.1552 M, respectively; and initial concentrations of
site-C30, site-C29, and site-C6 are 0.0651 M, 0.1463 M, and
0.1562 M, respectively. All other species are initially 0.0 M
except for C2, whose concentration is fixed at 3.16 � 10�5

M. The BIOGEOCHEM preprocessor indicated that all
reactions in this system are linearly independent, i.e., NI =
33, NE = Ne = 25, NKI = NK = Nk = 8. In other words, none of
the 25 equilibrium reactions nor any of the 8 kinetic
reactions are removed from consideration. Thus a formal
matrix decomposition of the reaction network should yield
24 mass action equilibrium equations and one user-specified
algebraic equation (25 total), 8 kinetic variable equations,
and 8 mass conservation equations (NC = M � NI = 41 �
33). An example of one decomposition of the reaction matrix
presented in Table 2 is shown in Appendix B, section B2.
[68] The 24 mass action equilibrium equations are

decoupled from the other 17 equations (8 mass conserva-
tion, 8 kinetic-variable, and one user-specified algebraic
equation). In other words, 24 equations are substituted into
17 equations to eliminate 24 secondary variables (C7, C8,
C9, C11 through C27, S2, S3, S4, and site-C30). The resulting
17 equations are then solved simultaneously for 17 master
variables (C1 through C6, C10, C28, C29, C30, S1, S5 through
S8, M, and site-C29).
[69] The time-variant dissolution of the mineral is

described by the concentration variations of six species
(Figures 2 and 3). C1, C16 and M in Figure 2 represent
the species that are directly involved in the dissolution
according to the reaction network The formation of species
C10 dominates the aqueous speciation in the system and is
ultimately the driving force for mineral dissolution. The last
two species in Figure 3 represent the two main adsorbed
species in the system. The simulation of the interaction of
these six species demonstrates the ability of BIOGEO-

CHEM to model a complex (multiple reaction types) mixed
(equilibrium and kinetic) reaction system.
[70] For the first 10 hours, there is a decline in the mineral

concentration (Figure 2) which corresponds to an equivalent
increase in the concentration of C10 (Figure 3). Dissolved
species C1 quickly combines with C5 to form the complexed
species. This continues until C10 begins to reach its equi-
librium value (at around 15 h) due to the limiting of total
concentration of C5 (Figure 3). At this time, the aqueous
species C1 and C16 that are formed no longer combine
directly into the complexed species but remain ‘‘free’’ and
increase to their approximate equilibrium values (Figure 2).
[71] The two main sorbed species, S3 and S5, also

undergo considerable changes during the first 20 h. Initially
S5 is the main adsorbed species (Figure 3). But when the
production of C10 begins to be limited by the available free
C5, its high production rate drives its continued formation
by scavenging other sources of C5 species. As a result, the
adsorbed species (S5) begins to decrease to form the
aqueous complexed species (C10) after ca. 12 h. S3 increases
as a result for approximately the next 3 h. After that time,
both species concentrations decrease because the available
sites decrease due to the continuous dissolution of M. Given
sufficient time, M will completely dissolve as indicated in
Figure 2 because of the assumption that it is a irreversible
reaction.
[72] Reactions R32 and R33 are weakly coupled to the

rest of the system because the amounts of C6 and its
complexed species are insignificant. About 10% of site-C6

was exchanged immediately into the solution because of the
equilibrium reaction R33. There are significant amounts of
site-C29 and C30 in the system, R32 proceeds from right to
left till it reaches equilibrium as shown in Figure 4.

6.3. Basis Switching

[73] This example demonstrates the need for basis switch-
ing when component concentrations become very low and
cause mass balance errors. The problem is defined by 20
aqueous complexation reactions and four precipitation-dis-
solution reactions involving 27 aqueous species and 4
precipitated species (reaction network presented in Table 3).
[74] Based on this reaction network there are a total of 31

species (M = 31), excluding the species H2O(‘) because its
activity is assumed 1.0, and 24 equilibrium reactions (Ne =
24). The BIOGEOCHEM preprocessor indicated that all 24
equilibrium reactions in this system are linearly independ-

Figure 3. Concentration curves for main complexed and
adsorbed species.

Figure 2. Concentration curves for major species directly
involving in the mineral dissolution.
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ent, i.e., NE = Ne = 24. Hence, a formal matrix decom-
position of the reaction network should yield 24 mass action
equilibrium equations and 7 mass conservation equations
(NC = M � NI = 31 � 24).
[75] Without basis switching, the simulation stopped

while checking mass balances. BIOGEOCHEM displayed
information in the output file that mass balances of the third
component, i.e., Al3+, was not maintained. A false con-
vergence was reached due to the low concentration of Al3+.
The absolute error of Al(OH)4

�1 concentration computed
based on that of Al3+ was too large. When this concen-
tration was substituted into the mass balance equation for
the component Al3+, it resulted in a large mass balance
error. Hence the converged Al3+ concentration is a false
value, and the simulation stopped. The input concentration
for TOT Al3+ was 4.263 � 10�5 M while the calculated
TOT Al3+ is 3.684 � 10�4 M; thus it is seen that there is a
large error in mass balance. The simulated concentration of

species Al3+ is 3.015 � 10�22 M, which is close to 0, while
the calculated concentration of Al(OH)4

� is 3.680 � 10�4 M,
which is relatively very large compared to other species in
the mass balance equation. Thus the species Al(OH)4

� is the
major contributor to the calculated TOT Al3+.
[76] When the basis switching was enabled, Al(OH)4

�,
which was the most abundant species in the mass balance
equation for Al3+, was selected automatically by BIOGEO-
CHEM to replace Al3+ as the master species for aluminum.
Simulation results are shown in Table 4, with 3 of the 4
possible precipitated species actually formed within the
system. The simulated concentration of Al(OH)4

� is 5.64 �
10�8 M, while the calculated concentration of Al3+ is 2.80
� 10�10 M. It is seen from Table 4 that the species
Al(OH)4

�, that has been chosen as the component species
by BIOGEOCHEM, has the largest concentration among all
species composing the component Al3+. Thus the contribu-
tion to mass balance is mainly from the species Al(OH)4

�;
however, the mass balance error due to the species Al(OH)4

�

is small, because the concentration of species Al(OH)4
� is

directly simulated to satisfy the mass balance equation. The
contribution to mass balance error by species Al3+ is small
because its concentration (which is indirectly calculated
based on the concentrations of component species) is
relatively small compared to that of the component species
Al(OH)4

�.

7. Conclusion and Discussion

[77] This paper proposed a generic framework to model
biogeochemical processes. To use this generic paradigm for
modeling reactive chemicals, the system must be translated
mathematically into a reaction network. A computer model

Figure 4. Concentration curves for ion exchanged species.

Table 3. Reaction Network for the Example Problem in Section

6.3

Reaction
Reaction
Number

Reaction
Constants

H2O(‘)  ! H+ + OH� (R1) Log K1
e = �14.0

Fe3+ + H2O(‘)  ! FeOH2+ + H+ (R2) Log K2
e = �2.19

Fe3+ + 2H2O(‘)  ! Fe(OH)2
+ + 2H+ (R3) Log K3

e = �5.67
Fe3+ + 3H2O(‘)  ! Fe(OH)3(aq) + 3H+ (R4) Log K4

e = �12.56
Fe3+ + 4H2O(‘)  ! Fe(OH)4

� + 4H+ (R5) Log K5
e = �21.6

Al3+ + H2O(‘)  ! AlOH2+ + H+ (R6) Log K6
e = �5.00

Al3+ + 2H2O(‘)  ! Al(OH)2
+ + 2H+ (R7) Log K7

e = �10.20
Al3+ + 4H2O(‘)  ! Al(OH)4

� + 4H+ (R8) Log K8
e = �23.00

Al3+ + 3H2O(‘)  ! Al(OH)3(aq) + 3H+ (R9) Log K9
e = �17.20

H+ + CO3
2� ! HCO3

� (R10) Log K10
e = 10.33

2H+ + CO3
2� ! H2CO3 (R11) Log K11

e = 16.68
Ca2+ + CO3

2� ! CaCO3(aq) (R12) Log K12
e = 3.22

Ca2+ + H+ + CO3
2� ! CaHCO3

+ (R13) Log K13
e = 11.44

H+ + SO4
2� ! HSO4

� (R14) Log K14
e = 1.99

Ca2+ + SO4
2� ! CaSO4(aq) (R15) Log K15

e = 2.30
Al3+ + SO4

2� ! AlSO4
+ (R16) Log K16

e = 3.50
Al3+ + 2SO4

2� ! Al(SO4)
2� (R17) Log K17

e = 5.00
Fe3+ + SO4

2� ! FeSO4
+ (R18) Log K18

e = 4.04
Fe3+ + 2SO4

2� ! Fe(SO4)2
� (R19) Log K19

e = 5.42
Na+ + SO4

2� ! NaSO4
� (R20) Log K20

e = 0.07
Ca2+ + CO3

2� ! CaCO3(s) (R21) Log K21
e = 8.48

Al3+ + 3H2O(‘)  ! Al(OH)3(s) + 3H+ (R22) Log K22
e = �9.11

Fe3+ + 3H2O(‘)  ! Fe(OH)3(s) + 3H+ (R23) Log K23
e = �4.89

Ca2+ + SO4
2� ! CaSO4(s) (R24) Log K24

e = 4.58

Table 4. Initial and Simulated Species Concentration

Species C0 (M) Log(Ceq)

Ca2+ 6.335 � 10�1 �2.160
CO32� 6.365 � 10�1 �5.478
Al3+ 4.263 � 10�5 �9.553
SO42� 3.177 � 10�2 �1.582
H+ 2.056 � 10�2 �6.536
Fe3+ 1.234 � 10�5 �13.77
Na+ 3.043 � 10�5 �1.522
OH� 0.000 �7.359
FeOH2+ 0.000 �9.952
Fe(OH)2

+ 0.000 �7.211
Fe(OH)3 0.000 �7.670
Fe(OH)4

� 0.000 �10.069
Al(OH)2+ 0.000 �8.542
Al(OH)2

+ 0.000 �7.521
Al(OH)4

� 0.000 �7.249
Al(OH)3 0.000 �8.090
HCO3

� 0.000 �2.000
H2CO3 0.000 �2.292
CaCO3 0.000 �5.260
CaHCO3

+ 0.000 �3.471
HSO4

� 0.000 �6.443
CaSO4 0.000 �2.283
AlSO4

+ 0.000 �8.896
Al(SO4)2

� 0.000 �9.398
FeSO4

+ 0.000 �12.576
Fe(SO4)2

� 0.000 �13.198
NaSO4

� 0.000 �3.454
CaCO3 (s) 0.000 �0.207
Al(OH)3 (s) 0.000 �4.371
Fe(OH)3 (s) 0.000 �4.912
CaSO4 (s) 0.000 �1
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was developed to diagonalize the reaction network and
numerically solve the diagonalized system of kinetic-varia-
ble equations, mass conservation equations, and a subset of
nonlinear algebraic equations (governing fast ion exchange
and precipitation-dissolution reactions, and some fast reac-
tions that are modeled with user-specified algebraic equa-
tions). The model is designed to have the most generic
capability for modeling biogeochemical processes. It can
simulate both equilibrium and kinetic reactions involving
aqueous complexation, adsorption, ion exchange, precipita-
tion/dissolution, oxidation-reduction, acid-base reactions,
and microbial-mediated reactions. Any fast reaction can be
modeled with an infinite rate governed by a mass action
equilibrium equation or by a user-specified algebraic equa-
tion. Any slow reaction can be modeled with microbial-
mediated enzymatic kinetics, empirical nth order rates, an
elementary rate, or a user-specified rate equation. The con-
ceptualization of reaction networks and the specification of
rate formulations and parameters should be carried out
iteratively in collaboration with modelers and experimental-
ists who understand the system [Burgos et al., 2002, 2003].
[78] The selection of chemical components and kinetic

variables are automated within the BIOGEOCHEM prepro-
cessor. In order to facilitate numerical integration, the set of
ordinary differential equations governing the production/
consumption of all species are decomposed into three
subsets: mass action equilibrium equations representing fast
equilibrium reactions, kinetic-variable equations represent-
ing slow kinetic reactions, and mass conservation equations
representing chemical components. Basis switching is
included to enhance the robustness of the model.
[79] The general paradigm addresses all the questions and

difficulties arising from primitive or DAE approaches. This
paradigm is new only in concept as the use of the diago-
nalization-decomposition procedure from mathematical and
numerical perspectives is well accepted. This procedure
facilitates the elimination of fast/equilibrium reactions from
slow/kinetic reactions to reduce the number of unknowns
that must be solved simultaneously, explicitly enforces mass
conservation, removes redundant fast/equilibrium reactions,
and excludes irrelevant slow/kinetic reactions in the reaction
network. The decoupling of fast reactions from kinetic
reactions alleviates the stiffness of the system. The explicit
enforcement of mass conservation overcomes the mass
conservation error due to numerical integration errors. The
removal of redundant reactions circumvents the problem of
singularity. The exclusion of irrelevant slow/kinetic reac-
tions greatly improves computational efficiency and avoids
problematic export of meaningless rate formulations and
parameter estimations to other system in which these
reactions are relevant. Finally and most importantly, the
diagonalization of slow/kinetic reactions allows the formu-
lation and parameterization of individual rate equations
rather than the optimization of rate formulation/parameters
for all reactions simultaneously [Yeh et al., 2001a]. The
individual rate formulation/parameterization is more de-
scriptive of geochemical and biochemical reactions [Burgos
et al., 2002, 2003].
[80] To make the model numerically robust, a dynamic

basis-species switching strategy due to the nonuniqueness
of components is employed. Backward basis switching
allows components to freely change in the simulation of

chemistry module, while being recovered for transport
simulation. Three example problems were selected to dem-
onstrate the versatility and robustness of the model.
[81] BIOGEOCHEM is a stand-alone batch model, which

can also be coupled with a hydrologic transport model
[Fang and Yeh, 2002]. It can apply to systems of high
complexity and can serve as a tool for the planning of batch
experiments, assessing system consistency and minimum
data needs for reaction based modeling [Yeh et al., 2001a].
The model described was tested with over 15 examples [Yeh
and Fang, 2002], although only 3 problems are demon-
strated in this paper to illustrate the versatility and flexibility
of the model.

Appendix A

A1. Decomposition I

[82] Let start with the following matrix, which is a repeat
of equation (5)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

�1 0 �1 �1
�1 1 0 0

1 0 1 �1
0 1 1 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>;

First, choose suspected component species. From a
geochemist’s point of view, let’s choose H, NTA, and Co
as component species, i.e., species that have the low priority
to be chosen as pivot elements. The remaining species can
therefore have higher priority to be chosen as pivot
elements.
[83] In the first column of the reaction matrix in equation

(5), there are three nonzero rows (first, second, and third
rows, respectively). The first and second rows are on the
low priority list for choosing pivot elements because their
corresponding species, H and NTA, respectively, have been
selected as components. Therefore the third row (corre-
sponding to HNTA) is chosen as a pivot element. Pivoting
on row 3 (HNTA) gives

1 0 1 0 0 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0 0 0 �2
0 1 1 �1
1 0 1 �1
0 1 1 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ðA1Þ
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[84] In the second column of the column 1 reduced
reaction matrix in equation (A1), there are three nonzero
rows (second, fourth, and fifth rows, respectively). The
second and fourth rows (corresponding to NTA and Co,
respectively) are on the low priority list for the selection of
pivot elements because NTA and Co have been selected as
components. (If the third row were not zero, it could not be
chosen as a pivot element because it had already been
chosen as the pivot element in the reduction of first
column.) Therefore choose the fifth row as the pivot
element. Pivoting on row 5 (CoNTA) gives

1 0 1 0 0 0

0 1 1 0 1 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0 0 0 �2
0 0 0 �1
1 0 1 �1
0 0 0 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ðA2Þ

If the fifth row in column 2 of the column 1 reduced
reaction matrix in (A1) were 0, then one would have to
choose either row 2 or row 4 as the pivot element. This
would signify that the user had selected incorrect compo-
nents. Under such circumstances, the preprocessor would
have chosen either NTA (row 2) or Co (row 4) as the pivot
element and removed it from the user-selected component
list and treated it as a product species.
[85] There are only two no-zero rows (rows 3 and 5) in the

third column in the column 2 reduced reaction in equation
(A2). However, these two rows (corresponding to HNTA and
CoNTA) have already been chosen as the pivot elements in
column 1 and column 2 reductions, respectively. They cannot
be chosen as pivoting elements, hence no row can be found as
the pivot element for this third column. This signifies that the
third reaction is a linearly dependent reaction and it depends
on the first and second reactions, i.e., R3 is linearly depend-
ent on R1 and R2.
[86] In the fourth column of the reduced reaction matrix

in equation (A2) there are four nonzero rows (rows 1, 2, 3,
and 6). Row 3 is not eligible as a pivoting element because
it has already been chosen in the first column reduction.
Rows 1 and 2 are on the low priority list. Therefore choose
row 6 as the pivot element. Pivoting on row 6 (B) gives

1 0 1 0 0 2

0 1 1 0 1 1

0 0 1 0 0 1

0 0 0 1 1 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

0 0 0 0

0 0 0 0

1 0 1 0

0 0 0 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ðA3Þ

The above procedure completes the reduction of the
reaction matrix and the decomposition of the unit matrix.
[87] Expand the matrix in equation (A3) and the follow-

ing equations are obtained:

d H½ �
dt
þ d HNTA½ �

dt
þ 2

d B½ �
dt
¼ 0 ðA4aÞ

d NTA½ �
dt

þ d HNTA½ �
dt

þ d CoNTA½ �
dt

þ d B½ �
dt
¼ 0 ðA4bÞ

d HNTA½ �
dt

þ d B½ �
dt
¼ R1 þ R3 ðA4cÞ

d Co½ �
dt
þ d CoNTA½ �

dt
¼ 0 ðA4dÞ

d CoNTA½ �
dt

¼ �R2 � R3 ðA4eÞ

d B½ �
dt
¼ R4 ðA4f Þ

Equations (A4a), (A4b), and (A4d) define Total H, Total
NTA, and Total Co, respectively. Since the total amount of
H, NTA, and Co are reaction invariant, they are defined as
component species. Equations (A4c) and (A4e) each
contains one equilibrium reaction. They are replaced by
the mass action equilibrium equations as shown in the last
equation of equations (6a) and (6b) in section 3.
[88] Equation (A3) is rearranged so that it can be written

in the form of equation (8) in section 3.2.3 as

0 0 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

1 0 1 0 0 2

0 1 1 0 1 1

0 0 0 1 1 0

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

1 0 0

0 �1 0

0 0 1

2
4

3
5 1

�1
0

2
4

3
5

0 0 0

0 0 0

0 0 0

2
4

3
5 0

0

0

2
4
3
5

2
6666664

3
7777775

R1

R2

R4

R3

8>><
>>:

9>>=
>>; ðA5Þ

Comparing equation (A5) and equation (8) which is
repeated here for the convenience of direct comparison,

B
dC

dt
¼ D K

01 02

� �
R

we can easily see that

B ¼

0 0 1 0 0 1

0 0 0 0 1 0

0 0 0 0 0 1

1 0 1 0 0 2

0 1 1 0 1 1

0 0 0 1 1 0

2
6666664

3
7777775
;

dC

dt
¼

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; and R ¼

R1

R2

R4

R3

8>><
>>:

9>>=
>>; ðA50Þ
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and

D ¼
1 0 0

0 �1 0

0 0 1

2
4

3
5;K ¼ 1

�1
0

2
4

3
5;

01 ¼
0 0 0

0 0 0

0 0 0

2
4

3
5; and 02 ¼

0

0

0

2
4
3
5

ðA500Þ

A2. Decomposition II

[89] An alternative diagonalization is to choose HNTA,
CoNTA, and B as components. Again repeat equation (5)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

�1 0 �1 �1
�1 1 0 0

1 0 1 �1
0 1 1 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>;

The reduction and decomposition procedure is similar to
decomposition I as follows. In the first column in equation
(5), pivoting on H (row 1) gives

1 0 1 0 0 0

�1 1 0 0 0 0

1 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

�1 0 �1 �1
0 1 1 1

0 0 0 �2
0 1 1 0

0 �1 �1 0

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ðA6Þ

In the second column in equation (A6), pivoting on NTA
(row 2) gives

1 0 0 0 0 0

�1 1 0 0 0 0

1 0 1 0 0 0

1 �1 0 1 0 0

�1 1 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

�1 0 �1 �1
0 1 1 1

0 0 0 �2
0 0 0 �1
0 0 0 1

0 0 0 1

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ðA7Þ

No pivot element can be found in the third column. This
signifies that R3 is linearly dependent on R1 and R2. In the
fourth column in (A7), pivoting on Co (row 4) gives

0 1 0 �1 0 0

0 0 0 1 0 0

�1 2 1 �2 0 0

1 �1 0 1 0 0

0 0 0 1 1 0

1 �1 0 1 0 1

2
6666664

3
7777775

d H½ �=dt
d NTA½ �=dt

d HNTA½ �=dt
d Co½ �=dt

d CoNTA½ �=dt
d B½ �=dt

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

�1 0 �1 0

0 1 1 0

0 0 0 0

0 0 0 �1
0 0 0 0

0 0 0 0

2
6666664

3
7777775

R1

R2

R3

R4

8>><
>>:

9>>=
>>; ðA8Þ

Expand the matrix and the following equations can be
obtained:

d NTA½ �
dt

� d Co½ �
dt
¼ �R1 � R3 ðA9aÞ

d Co½ �
dt
¼ R2 þ R3 ðA9bÞ

� d H½ �
dt
þ 2

d NTA½ �
dt

þ d HNTA½ �
dt

� 2
d Co½ �
dt
¼ 0 ðA9cÞ

d H½ �
dt
� d NTA½ �

dt
þ d Co½ �

dt
¼ �R4 ðA9dÞ

d Co½ �
dt
þ d CoNTA½ �

dt
¼ 0 ðA9eÞ

d H½ �
dt
� d NTA½ �

dt
þ d Co½ �

dt
þ d B½ �

dt
¼ 0 ðA9f Þ

[90] Equations (A9c), (A9e), and (A9f) define Total
HNTA, Total CoNTA, and Total B, respectively. Equations
(A9a) and (A9b) contain equilibrium reactions, they are
replaced by the mass action equilibrium equations as shown
in the last equation of equations (7a) and (7b) in section 3.

A3. Elimination of Secondary Species

[91] To illustrate the procedure of eliminating secondary
species, consider the following reaction network with two
fast reactions:

Aþ C  ! 3D;ðRA1Þ

with equilibrium constant K1
e

Aþ 2B  ! 2C;ðRA2Þ

with equilibrium K2
e. Let us assume that A and B have been

chosen as the component via column reduction of the
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reaction matrix. Reactions RA1 and RA2 are two linearly
independent reactions, two species can be eliminated from
simultaneous consideration. To illustrate the procedure of
elimination, a matrix made up this two reactions is first
generated as

�1 0 �1 3

�1 �2 2 0

� � log Að Þ
log Bð Þ
log Cð Þ
log Dð Þ

8>><
>>:

9>>=
>>; ¼

1 0

0 1

� �
logKe

1

logKe
2

� �
ðA10Þ

[92] In the first row in equation (A10), since A and B are
component species, the first and second columns corre-
sponding to species A and B, respectively, cannot be chosen
as the pivoting element. The third and fourth columns
corresponding to species C and D are the potential candi-
dates. Because the fourth column (Species D) has fewer
nonzero rows, it is chosen as the pivot element for the first
row reduction. Pivoting on species D gives

�1 0 �1 3

�1 �2 2 0

� � log Að Þ
log Bð Þ
log Cð Þ
log Dð Þ

8>><
>>:

9>>=
>>; ¼

1 0

0 1

� �
logKe

1

logKe
2

� �
ðA11Þ

It is noted that equation (A11) is identical to equation (10)
for this case. This is so because all rows in column 4
(corresponding to species D, the chosen pivot) are zeros,
hence pivoting on species D has not changed the matrix.
[93] In the second row in equation (A11), the first and

second columns corresponding to Spaces A and B cannot be
chosen as the pivot element as in the first row reduction.
Column 4 corresponding to Species D has already been
pivoted. The third column corresponding to Species C is the
only candidate for pivoting. Pivoting on Species C (column
3) gives

�3=2 �1 0 3

�1 �2 2 0

� � log Að Þ
log Bð Þ
log Cð Þ
log Dð Þ

8>><
>>:

9>>=
>>; ¼

1 1=2
0 1

� �
logKe

1

logKe
2

� �

ðA12Þ

[94] The next step is to normalize the finally reduced
matrix with respect to the pivot elements (column 4 of the
first row and column 3 of the second row in equation
A(12)). After the normalization, we have

�1=2 �1=3 0 1

�1=2 �1 1 0

� � log Að Þ
log Bð Þ
log Cð Þ
log Dð Þ

8>><
>>:

9>>=
>>; ¼

1=3 1=6
0 1=2

� �
logKe

1

logKe
2

� �

ðA13Þ

[95] Expanding equation (A13), we have

Dð Þ ¼ Ke
1

� �1
3 Ke

2

� �1
6 Að Þ

1
2 Bð Þ

1
3 ðA14Þ

and

Cð Þ ¼ Ke
2

� �1
2 Að Þ

1
2 Bð Þ ðA15Þ

The elimination of Species D and C using equation (A14)
and (A15) is as easy as ‘‘eating rice’’ (Chinese proverb).

Appendix B

[96] The decomposed set of equations for examples 1 and
2, respectively, are given in sections B1 and B2, respectively.

B1. Matrix Decomposition for the Reaction Network of
the Transformation of EDTA

B1.1. Mass Action Equilibrium Equations

Co IIð Þ aqð Þð Þ ¼ 1

Ke
1

Sneg-Co
� �

Sneg
� � ðB1Þ

Spos-Co IIð ÞEDTA
� �

¼ Ke
2 Co IIð ÞEDTA aqð Þð Þ Spos

� �
ðB2Þ

Spos-Fe IIIð ÞEDTA
� �

¼ Ke
3 Spos
� �

Fe IIIð ÞEDTA aqð Þð Þ ðB3Þ

EDTA aqð Þð Þ ¼ 1

Ke
4

Spos
� �

Spos-EDTA
� � ðB4Þ

Co IIIð ÞEDTA aqð Þð ¼ 1

Ke
5

�
Spos-Co IIIð ÞEDTA
� �

Spos
� � ðB5Þ

B1.2. Kinetic-Variable Equations

d Co IIð Þ aqð Þ½ � þ Sneg-Co
� �� �

dt
¼ R6;

R6 ¼ kf6 Spos-Co IIð ÞEDTA
� �

� kb6 Co IIð Þ aqð Þ½ � Spos-EDTA
� �

d EDTA½ � þ Spos-EDTA
� �

� Co IIð Þ aqð Þ½ � þ Sneg-Co
� �� �

dt
¼ �R7 � R10

R7 ¼ kf7 Spos-EDTA
� �

� kb7 Spos
� �

Fe IIIð Þ-EDTA aqð Þ½ �; ðB7Þ

R10 ¼
m2 EDTA aqð Þ½ � O2½ � Biomass½ �
k12 þ EDTA aqð Þ½ �ð Þ k22 þ O2½ �ð Þ

d Co IIIð ÞEDTA aqð Þ½ � þ Spos-Co IIIð ÞEDTA
� �� �

dt
¼ R8;

R8 ¼ kf8 Co IIð ÞEDTA aqð Þ½ � � kb8 Co IIIð ÞEDTA aqð Þ½ �

d CO2½ �
dt

¼ 3R9 þ 3R10R ¼
m1 Fe IIIð ÞEDTA aqð Þ½ � O2½ � Biomass½ �
k11 þ Fe IIIð ÞEDTA aqð Þ½ �ð Þ k21 þ O2½ �ð Þ ;

R10 ¼
m2 EDTA aqð Þ½ � O2½ � Biomass½ �

k12 þ EDTA aqð Þ½ �ð Þ k22 þ O2½ �½ð Þ ðB9Þ

ðB6Þ

ðB8Þ
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B1.3. Mass Conservation Equations

TOTSneg ¼ Sneg
� �

þ Sneg-Co
� �

¼ Initial TOTSneg ðB10Þ

TOTCo IIð ÞEDTA ¼ Co IIð Þ aqð Þ½ � þ Sneg-Co� þ Co IIð ÞEDTA aqð Þ½ �
�

þ Spos-Co IIð ÞEDTA
� �

þ Co IIIð ÞEDTA aqð Þ½ �

þ Spos-Co IIIð ÞEDTA
� �

¼ Initial TOTCo IIð ÞEDTA

ðB11Þ

TOTSpos ¼ Spos
� �

þ Spos-Co IIð ÞEDTA
� �

þ Spos-Fe IIIð ÞEDTA
� �

þ Spos-EDTA
� �

þ Spos-Co IIIð ÞEDTA
� �

¼ Initial TOTSpos ðB12Þ

TOTFe IIIð ÞEDTA ¼ �½Co IIð Þ aqð Þ� � Sneg-Co
� �

þ Fe IIIð ÞEDTA aqð Þ½ � þ Spos-Fe IIIð ÞEDTA
� �

þ EDTA aqð Þ½ � þ Spos-EDTA
� �

þ 1=3 CO2½ �

¼ Initial TOTFe IIIð ÞEDTA ðB13Þ

TOTO2
¼ O2½ � þ 2 CO2½ � ¼ Initial TOTO2

ðB14Þ

TOTBiomass ¼ Biomass½ � � 1=3 CO2½ � ¼ Initial TOTBiomass ðB15Þ

[97] Note that a species inside a parenthesis in equations
(B1)–(B15) denotes the activity of the species. A species
inside a bracket in equations (B1)–(B15) denotes the con-
centration of the species. Activity is activity coefficient �
concentration.

B2. Matrix Decomposition for the Complex
(Multiple Reaction Types) Mixed (Equilibrium
and Kinetic) Reaction System

B2.1. User-Specified Algebraic Equations

SANs

NA

Mmineral M½ � ¼ S1½ � þ S2½ � þ S3½ � þ S4½ � þ S5½ � þ S6½ � þ S7½ � þ S8½ �

ðB16Þ

[98] This user-specified equation is modified from Stumm
and Morgan [1996], in which SA is the unit surface area (m2

g�1) of mineral, NS is the surface site density (mol sites
m�2), NA is Avogadro’s number (mol sites mol�1), Mminerale

is the molecular weight of mineral (g mol�1).

B2.2. Mass Action Equilibrium Equations

C7ð Þ ¼ Ke
4 C5ð Þ C6ð Þ ðB17Þ

C8ð Þ ¼ Ke
5 C2ð Þ C5ð Þ C6ð Þ ðB18Þ

C9ð Þ ¼ Ke
6

C6ð Þ
C2ð Þ

ðB19Þ

C11ð Þ ¼ Ke
8 C1ð Þ C2ð Þ C5ð Þ ðB20Þ

C12ð Þ ¼ Ke
9

C1ð Þ C5ð Þ
C2ð Þ

ðB21Þ

C13ð Þ ¼ Ke
10

C1ð Þ C5ð Þ
C2ð Þ2

ðB22Þ

C14ð Þ ¼ Ke
11

C1ð Þ
C2ð Þ

ðB23Þ

C15ð Þ ¼ Ke
12

C1ð Þ
C2ð Þ2

ðB24Þ

C16ð Þ ¼ Ke
13

C1ð Þ
C2ð Þ3

ðB25Þ

C17ð Þ ¼ Ke
14

C1ð Þ
C2ð Þ4

ðB26Þ

C18ð Þ ¼ Ke
15

C1ð Þ2

C2ð Þ2
ðB27Þ

C19ð Þ ¼ Ke
16 C2ð Þ C4ð Þ C5ð Þ ðB28Þ

C20ð Þ ¼ Ke
17

C4ð Þ
C2ð Þ

ðB29Þ

C21ð Þ ¼ Ke
18

C4ð Þ
C2ð Þ2

ðB30Þ

C22ð Þ ¼ Ke
19

C4ð Þ
C2ð Þ3

ðB31Þ

C23ð Þ ¼ Ke
20 C2ð Þ C5ð Þ ðB32Þ

C24ð Þ ¼ Ke
21 C2ð Þ2 C5ð Þ ðB33Þ

C25ð Þ ¼ Ke
22 C2ð Þ3 C5ð Þ ðB34Þ

C26ð Þ ¼ Ke
23 C2ð Þ4 C5ð Þ ðB35Þ

C27ð Þ ¼ 1

Ke
24

1

C2ð Þ
ðB36Þ
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S2ð Þ ¼ Ke
25

S1ð Þ
C2ð Þ

ðB37Þ

S3ð Þ ¼ Ke
26 C2ð Þ S1ð Þ ðB38Þ

S4ð Þ ¼ Ke
27 C2ð Þ3 C5ð Þ S1ð Þ ðB39Þ

site-C30ð Þ ¼ 1

Ke
33

0:5

C30ð Þ site-C6ð Þ0:5

C6ð Þ0:5
ðB40Þ

B2.3. Kinetic Variable Equations

d C10½ �
dt
¼ R7;R7 ¼ kf7 C1½ � C5½ � � kb7 C10½ � ðB41Þ

d

dt
S1½ � þ M½ � þ S2½ � þ S3½ � þ S5½ � þ S6½ � þ S7½ � þ S4½ � þ S8½ �ð Þ ¼ �R1;

R1 ¼ kf1 M½ � ðB42Þ

d C3½ �
dt
¼ �R3;R3 ¼ kf3 C3½ � � kb3 C4½ � C5½ � ðB43Þ

d S5½ �
dt
¼ R28;R28 ¼ kf28 S1½ � C1½ � C2½ � C5½ � � kb28 S5½ � ðB44Þ

d S6½ �
dt
¼ R29;R29 ¼ kf29 S1½ � C2½ � C4½ � C5½ � � kb29 S6½ � ðB45Þ

d S7½ �
dt
¼ R30;R30 ¼ kf30

S1½ � C4½ �
C2½ �

� kb30 S7½ � ðB46Þ

d S8½ �
dt
¼ R31;R31 ¼ kf31 S1½ � C2½ � C5½ � C6½ � � kb31 S8½ � ðB47Þ

d C29½ �
dt
¼ �R32;R32 ¼ kf32 C29½ � site-C30½ �2� kb32 site-C29½ � C30½ �2

ðB48Þ

B2.4. Mass Conservation Equations

TOTC6
¼ C6½ � þ C7½ � þ C8½ � þ C9½ � þ S8½ � þ C29½ � � 0:5 site� C30½ �

¼ Initial TOTC6
ðB49Þ

TOTC4
¼ C4½ � þ C3½ � þ C19½ � þ C20½ � þ C21½ � þ C22½ � þ S6½ � þ S7½ �

¼ Initial TOTC4
ðB50Þ

TOTC2
¼ C2½ � � 3 S1½ � þ C8½ � � C9½ � þ C11½ � � C12½ �

� 2 C13½ � � C14½ � � 2 C15½ � � 3 C16½ � � 3 M½ �

� 4 C17½ � � 2 C18½ � þ C19½ � � C20½ � � 2 C21½ �

� 3 C22½ � þ C23½ � þ 2 C24½ � þ 3 C25½ � þ 4 C26½ �

� C27½ � � 4 S2½ � � 2 S3½ � � 2 S5½ � � 2 S6½ �

�4 S7½ � � 2 S8½ � ¼ Initial TOTC2
ðB51Þ

TOTC5
¼ C5½ � þ C7½ � þ C8½ � þ C10½ � þ C11½ � þ C12½ � þ C13½ �

þ C3½ � þ C19½ � þ C23½ � þ C24½ � þ C25½ � þ C26½ � þ S5½ �

þ S6½ � þ S4½ � þ S8½ � ¼ Initial TOTC5
ðB52Þ

TOTC1
¼ C1½ � þ S1½ � þ C10½ � þ C11½ � þ C12½ � þ C13½ � þ C14½ �

þ C15½ � þ C16½ � þ M½ � þ C17½ � þ 2 C18½ � þ S2½ � þ S3½ �

þ2 S5½ � þ S6½ �þ S7½ � þ S4½ � þ S8½ � ¼ Initial TOTC1
ðB53Þ

TOTC30
¼ C30½ � þ site-C30½ � ¼ Initial TOTC30

ðB54Þ

TOTsite�C29
¼ C29½ � þ site-C29½ � ¼ Initial TOTC29

ðB55Þ

TOTsite-C6
¼ � C29½ � þ 0:5 site-C30½ � þ site-C6½ �
¼ Initial TOTCsite-C6

ðB56Þ

[99] Note that in equations (B16)–(B56) a species inside
parentheses denotes the activity of the species. A species
inside a bracket denotes the concentration of the species.
Activity is activity coefficient � concentration.
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